0 30 20 29 v 1 1 1 Fe b 20 03 POWER-LAW BOUNDS ON TRANSFER MATRICES AND QUANTUM DYNAMICS IN ONE DIMENSION II

We establish quantum dynamical lower bounds for a number of discrete one-dimensional Schrödinger operators. These dynamical bounds are derived from power-law upper bounds on the norms of transfer matrices. We develop further the approach from part I and study many examples. Particular focus is put on models with finitely or at most countably many exceptional energies for which one can prove power-law bounds on transfer matrices. The models discussed in this paper include substitution models, Sturmian models, a hierarchical model, the prime model, and a class of moderately sparse potentials.

[1]  Andras Suto,et al.  Schrödinger difference equation with deterministic ergodic potentials , 2012, 1203.3646.

[2]  Z. Wen,et al.  Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials , 2004 .

[3]  G. Stolz,et al.  Delocalization in Random Polymer Models , 2003, math-ph/0405024.

[4]  D. Damanik,et al.  Localization for discrete one-dimensional random word models☆ , 2002, math-ph/0211057.

[5]  Andrej Zlatoš Sparse potentials with fractional Hausdorff dimension , 2002, math-ph/0210054.

[6]  D. Damanik,et al.  Power-Law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension , 2002, math-ph/0206025.

[7]  C. Oliveira,et al.  De)localization in the prime Schrödinger operator , 2001, cond-mat/0103313.

[8]  S. Jitomirskaya,et al.  Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .

[9]  D. Damanik Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999, math-ph/9912005.

[10]  D. Damanik,et al.  Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.

[11]  F. Germinet,et al.  Dynamical Localization for the Random Dimer Schrödinger Operator , 1999, math-ph/9907006.

[12]  D. Damanik,et al.  Uniform Spectral Properties of One-Dimensional Quasicrystals, II. The Lyapunov Exponent , 1999, math-ph/9905008.

[13]  B. Simon,et al.  Effective Perturbation Methods for One-Dimensional Schrödinger Operators , 1999 .

[14]  B. Simon,et al.  Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators , 1998 .

[15]  C. Remling A Probabilistic Approach to One-Dimensional Schrödinger Operators with Sparse Potentials , 1997 .

[16]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[17]  R. Tao Extended states in aperiodic systems , 1994 .

[18]  Ryu,et al.  Localized and extended states in a deterministically aperiodic chain. , 1994, Physical review. B, Condensed matter.

[19]  L. Raymond,et al.  Resistance of one-dimensional quasicrystals , 1992 .

[20]  Wu,et al.  Absence of localization in a random-dimer model. , 1990, Physical review letters.

[21]  Ali,et al.  One-dimensional generalized Fibonacci tilings. , 1990, Physical review. B, Condensed matter.

[22]  H. Kunz,et al.  Cantor spectrum and singular continuity for a hierarchical Hamiltonian , 1989 .

[23]  M. Severin,et al.  Periodic and quasiperiodic wavefunctions in a class of one-dimensional quasicrystals: an analytical treatment , 1989 .

[24]  I. Guarneri Spectral Properties of Quantum Diffusion on Discrete Lattices , 1989 .

[25]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[26]  A. Maritan,et al.  The spectrum of a one-dimensional hierarchical model , 1988 .

[27]  D. Pearson,et al.  On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .

[28]  Würtz,et al.  Schrödinger problem for hierarchical heterostructures. , 1987, Physical review. B, Condensed matter.

[29]  Tim Purdy Power-law subordinacy and singular spectra I. Half-line operators , 1999 .

[30]  D. Damanik,et al.  Uniform spectral properties of one-dimensional quasicrystals , 1999 .

[31]  Y. Last Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .

[32]  J. Combes Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators , 1993 .