0 30 20 29 v 1 1 1 Fe b 20 03 POWER-LAW BOUNDS ON TRANSFER MATRICES AND QUANTUM DYNAMICS IN ONE DIMENSION II
暂无分享,去创建一个
[1] Andras Suto,et al. Schrödinger difference equation with deterministic ergodic potentials , 2012, 1203.3646.
[2] Z. Wen,et al. Hausdorff Dimension of Spectrum of One-Dimensional Schrödinger Operator with Sturmian Potentials , 2004 .
[3] G. Stolz,et al. Delocalization in Random Polymer Models , 2003, math-ph/0405024.
[4] D. Damanik,et al. Localization for discrete one-dimensional random word models☆ , 2002, math-ph/0211057.
[5] Andrej Zlatoš. Sparse potentials with fractional Hausdorff dimension , 2002, math-ph/0210054.
[6] D. Damanik,et al. Power-Law Bounds on Transfer Matrices and Quantum Dynamics in One Dimension , 2002, math-ph/0206025.
[7] C. Oliveira,et al. De)localization in the prime Schrödinger operator , 2001, cond-mat/0103313.
[8] S. Jitomirskaya,et al. Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .
[9] D. Damanik. Gordon-type arguments in the spectral theory of one-dimensional quasicrystals , 1999, math-ph/9912005.
[10] D. Damanik,et al. Uniform Spectral Properties of One-Dimensional Quasicrystals, III. α-Continuity , 1999, math-ph/9910017.
[11] F. Germinet,et al. Dynamical Localization for the Random Dimer Schrödinger Operator , 1999, math-ph/9907006.
[12] D. Damanik,et al. Uniform Spectral Properties of One-Dimensional Quasicrystals, II. The Lyapunov Exponent , 1999, math-ph/9905008.
[13] B. Simon,et al. Effective Perturbation Methods for One-Dimensional Schrödinger Operators , 1999 .
[14] B. Simon,et al. Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators , 1998 .
[15] C. Remling. A Probabilistic Approach to One-Dimensional Schrödinger Operators with Sparse Potentials , 1997 .
[16] B. Simon,et al. Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .
[17] R. Tao. Extended states in aperiodic systems , 1994 .
[18] Ryu,et al. Localized and extended states in a deterministically aperiodic chain. , 1994, Physical review. B, Condensed matter.
[19] L. Raymond,et al. Resistance of one-dimensional quasicrystals , 1992 .
[20] Wu,et al. Absence of localization in a random-dimer model. , 1990, Physical review letters.
[21] Ali,et al. One-dimensional generalized Fibonacci tilings. , 1990, Physical review. B, Condensed matter.
[22] H. Kunz,et al. Cantor spectrum and singular continuity for a hierarchical Hamiltonian , 1989 .
[23] M. Severin,et al. Periodic and quasiperiodic wavefunctions in a class of one-dimensional quasicrystals: an analytical treatment , 1989 .
[24] I. Guarneri. Spectral Properties of Quantum Diffusion on Discrete Lattices , 1989 .
[25] Jean Bellissard,et al. Spectral properties of one dimensional quasi-crystals , 1989 .
[26] A. Maritan,et al. The spectrum of a one-dimensional hierarchical model , 1988 .
[27] D. Pearson,et al. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .
[28] Würtz,et al. Schrödinger problem for hierarchical heterostructures. , 1987, Physical review. B, Condensed matter.
[29] Tim Purdy. Power-law subordinacy and singular spectra I. Half-line operators , 1999 .
[30] D. Damanik,et al. Uniform spectral properties of one-dimensional quasicrystals , 1999 .
[31] Y. Last. Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .
[32] J. Combes. Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators , 1993 .