Proportional reversed hazard and frailty models

Reversed hazard rates are found to be very useful in survival analysis and reliability especially in study on parallel systems and in the analysis of left censored lifetime data. In this paper, we derive a class of bivariate distributions having marginal proportional reversed hazard rates. We, then, introduce a class of proportional reversed hazard rates frailty models and propose a multivariate correlated gamma frailty model. Bivariate reversed hazard rates and association measure are discussed in terms of frailty parameters.

[1]  Asok K. Nanda,et al.  SOME RESULTS ON REVERSED HAZARD RATE ORDERING , 2001 .

[2]  Maxim Finkelstein,et al.  On one class of bivariate distributions , 2003 .

[3]  Philip Hougaard,et al.  Analysis of Multivariate Survival Data , 2001 .

[4]  A. Yashin,et al.  Dependent Hazards in Multivariate Survival Problems , 1999 .

[5]  Ramesh C. Gupta,et al.  Analyzing Survival Data by Proportional Reversed Hazard Model , 2001 .

[6]  J. Vaupel,et al.  The impact of heterogeneity in individual frailty on the dynamics of mortality , 1979, Demography.

[7]  Yijian Huang,et al.  Semiparametric regression analysis on longitudinal pattern of recurrent gap times. , 2004, Biostatistics.

[8]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[9]  David M. Rocke,et al.  Multivariate survival analysis with doubly‐censored data: application to the assessment of Accutane treatment for fibrodysplasia ossificans progressiva , 2002, Statistics in medicine.

[10]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[11]  Jerald F. Lawless,et al.  Inference Based on Retrospective Ascertainment: An Analysis of the Data on Transfusion-Related AIDS , 1989 .

[12]  Dilip Roy,et al.  A CHARACTERIZATION OF MODEL APPROACH FOR GENERATING BIVARIATE LIFE DISTRIBUTIONS USING REVERSED HAZARD RATES , 2002 .

[13]  Nadh G Bismi,et al.  Bivarite burr distributions , 2005 .

[14]  J. Keilson,et al.  Uniform stochastic ordering and related inequalities , 1982 .

[15]  Antonio Di Crescenzo,et al.  Some results on the proportional reversed hazards model , 2000 .

[16]  Harshinder Singh,et al.  The Reversed Hazard Rate Function , 1998, Probability in the Engineering and Informational Sciences.

[17]  Pushpa L. Gupta,et al.  Modeling failure time data by lehman alternatives , 1998 .

[18]  V. L. Gleeja,et al.  On Bivariate Reversed Hazard Rates , 2006 .

[19]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[20]  D. Clayton,et al.  Multivariate generalizations of the proportional hazards model , 1985 .