Operational Atmospheric Correction for Imaging Spectrometers Accounting for the Smile Effect

Hyperspectral pushbroom imagers are affected by a number of artifacts, such as pixel nonuniformity, spectral smile, and keystone. These have to be taken into account during system correction, orthorectification, or atmospheric correction, as performed in processing and archiving facilities (PAFs). This contribution is presenting an efficient and accurate smile correction method integrated in the atmospheric correction. The proposed technique will be used in the PAF of the German hyperspectral Environmental Mapping and Analysis Program mission. The spectral smile shift across the detector array is parametrized with a fourth-order polynomial function for each channel based on the instrument optical design model or measured laboratory data. Alternatively, spectral smile shifts can be calculated from image data using channels in atmospheric absorption regions. The concept for the time-optimized processor is outlined, and the results are presented for simulated EnMAP data and existing pushbroom imagery [HYPERION, AISA (Airborne Imaging Spectrometer for Applications), and HYSPEX (Hyperspectral Camera)].

[1]  Luis Guanter,et al.  Simulation of Optical Remote-Sensing Scenes With Application to the EnMAP Hyperspectral Mission , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Jens Nieke,et al.  Spatial PSF Nonuniformity Effects in Airborne Pushbroom Imaging Spectrometry Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[3]  L. Guanter,et al.  Spectral calibration of hyperspectral imagery using atmospheric absorption features. , 2006, Applied optics.

[4]  Zheng Qu,et al.  HATCH: results from simulated radiances, AVIRIS and Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Gail P. Anderson,et al.  Atmospheric correction for shortwave spectral imagery based on MODTRAN4 , 1999, Optics & Photonics.

[6]  Eyal Ben-Dor,et al.  Use of Derivative Calculations and Minimum Noise Fraction Transform for Detecting and Correcting the Spectral Curvature Effect (Smile) in Hyperion Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[7]  S. Adler-Golden,et al.  Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN 4 , 2000 .

[8]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) Mission , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[9]  K. Staenz,et al.  Retrieval of surface reflectance from hyperspectral Data using a look-up table approach , 1997 .

[10]  Marcos J. Montes,et al.  Refinement of wavelength calibrations of hyperspectral imaging data using a spectrum-matching technique , 2004 .

[11]  Robert A. Neville,et al.  Spectral calibration of imaging spectrometers by atmospheric absorption feature matching , 2008 .

[12]  A. Goetz,et al.  Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean , 2009 .

[13]  Jens Nieke,et al.  APEX - the Hyperspectral ESA Airborne Prism Experiment , 2008, Sensors.

[14]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  R. Richter,et al.  Correction of satellite imagery over mountainous terrain. , 1998, Applied optics.

[16]  Hermann Kaufmann,et al.  On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing , 2009 .

[17]  Daniel Schläpfer,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 1: Parametric orthorectification , 2002 .

[18]  Daniel Schläpfer,et al.  Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor , 1998 .

[19]  R. Richter A fast atmospheric correction algorithm applied to Landsat TM images , 1990 .

[20]  P Mouroulis,et al.  Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. , 2000, Applied optics.

[21]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[22]  Juergen Fischer,et al.  MERIS in‐flight spectral calibration , 2006 .

[23]  Jens Nieke,et al.  Uniformity of Imaging Spectrometry Data Products , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Daniel Schläpfer,et al.  Considerations on Water Vapor and Surface Reflectance Retrievals for a Spaceborne Imaging Spectrometer , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Stefan Adriaensen,et al.  Structure, Components, and Interfaces of the Airborne Prism Experiment (APEX) Processing and Archiving Facility , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  R. Richter,et al.  Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction , 2002 .

[28]  Daniel Schläpfer,et al.  Scene-based method for spatial misregistration detection in hyperspectral imagery. , 2007, Applied optics.

[29]  Marcus S. Stefanou,et al.  A Method for Assessing Spectral Image Utility , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Xavier Briottet,et al.  Direct and inverse radiative transfer solutions for visible and near-infrared hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.