FFT-based Kronecker product approximation to micromagnetic long-range interactions

We derive a Kronecker product approximation for the micromagnetic long-range interactions in a collocation framework by means of separable sinc quadrature. Evaluation of this operator for structured tensors (Canonical format, Tucker format, Tensor Trains) scales below linear in the volume size. Based on efficient usage of FFT for structured tensors, we are able to accelerate computations to quasi-linear complexity in the number of collocation points used in one dimension. Quadratic convergence of the underlying collocation scheme as well as exponential convergence in the separation rank of the approximations is proved. Numerical experiments on accuracy and complexity confirm the theoretical results.

[1]  H. Forster,et al.  Fast boundary methods for magnetostatic interactions in micromagnetics , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[2]  P. Hopke,et al.  Block Tensor Decomposition for Source Apportionment of Air Pollution , 2011, 1110.4133.

[3]  Thomas Schrefl,et al.  Non-uniform FFT for the finite element computation of the micromagnetic scalar potential , 2013, J. Comput. Phys..

[4]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[5]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[6]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Schabes,et al.  Micromagnetic simulations for terabit/in2 head/media systems , 2008 .

[8]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[9]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[10]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[11]  E. Tyrtyshnikov Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[12]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[13]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[14]  Boris N. Khoromskij,et al.  Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.

[15]  Thomas Schrefl,et al.  Micromagnetic modelling—the current state of the art , 2000 .

[16]  Dietrich Braess,et al.  On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[19]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[20]  Nicole Fruehauf Numerical Methods Based On Sinc And Analytic Functions , 2016 .

[21]  C. Abert,et al.  A Fast Finite-Difference Method for Micromagnetics Using the Magnetic Scalar Potential , 2012, IEEE Transactions on Magnetics.

[22]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[23]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[24]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[25]  Markus Gusenbauer,et al.  Fast stray field computation on tensor grids , 2011, J. Comput. Phys..

[26]  S. W. Yuan,et al.  Fast adaptive algorithms for micromagnetics , 1992 .

[27]  Евгений Евгеньевич Тыртышников,et al.  Тензорные аппроксимации матриц, порожденных асимптотически гладкими функциями@@@Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .

[28]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[29]  D. R. Fredkin,et al.  Hybrid method for computing demagnetizing fields , 1990 .

[30]  Lukas Exl,et al.  Numerical methods for the stray-field calculation: A comparison of recently developed algorithms , 2012, 1204.4302.

[31]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[32]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[33]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[34]  A. V. Goncharov,et al.  Kronecker product approximation of demagnetizing tensors for micromagnetics , 2010, J. Comput. Phys..

[35]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[36]  J. L. Blue,et al.  Using multipoles decreases computation time for magnetostatic self-energy , 1991 .