FFT-based Kronecker product approximation to micromagnetic long-range interactions
暂无分享,去创建一个
Thomas Schrefl | Claas Abert | Dieter Suess | Lukas Exl | Norbert J. Mauser | Hans Peter Stimming | N. Mauser | H. Stimming | T. Schrefl | D. Suess | L. Exl | C. Abert
[1] H. Forster,et al. Fast boundary methods for magnetostatic interactions in micromagnetics , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).
[2] P. Hopke,et al. Block Tensor Decomposition for Source Apportionment of Air Pollution , 2011, 1110.4133.
[3] Thomas Schrefl,et al. Non-uniform FFT for the finite element computation of the micromagnetic scalar potential , 2013, J. Comput. Phys..
[4] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[5] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[6] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[7] M. Schabes,et al. Micromagnetic simulations for terabit/in2 head/media systems , 2008 .
[8] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[9] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[10] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[11] E. Tyrtyshnikov. Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .
[12] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[13] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[14] Boris N. Khoromskij,et al. Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal Operators. Part I. Separable Approximation of Multi-variate Functions , 2005, Computing.
[15] Thomas Schrefl,et al. Micromagnetic modelling—the current state of the art , 2000 .
[16] Dietrich Braess,et al. On the efficient computation of high-dimensional integrals and the approximation by exponential sums , 2009 .
[17] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[18] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[19] Tamara G. Kolda,et al. Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..
[20] Nicole Fruehauf. Numerical Methods Based On Sinc And Analytic Functions , 2016 .
[21] C. Abert,et al. A Fast Finite-Difference Method for Micromagnetics Using the Magnetic Scalar Potential , 2012, IEEE Transactions on Magnetics.
[22] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[23] Daniel M. Dunlavy,et al. A scalable optimization approach for fitting canonical tensor decompositions , 2011 .
[24] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[25] Markus Gusenbauer,et al. Fast stray field computation on tensor grids , 2011, J. Comput. Phys..
[26] S. W. Yuan,et al. Fast adaptive algorithms for micromagnetics , 1992 .
[27] Евгений Евгеньевич Тыртышников,et al. Тензорные аппроксимации матриц, порожденных асимптотически гладкими функциями@@@Tensor approximations of matrices generated by asymptotically smooth functions , 2003 .
[28] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[29] D. R. Fredkin,et al. Hybrid method for computing demagnetizing fields , 1990 .
[30] Lukas Exl,et al. Numerical methods for the stray-field calculation: A comparison of recently developed algorithms , 2012, 1204.4302.
[31] J. Coey,et al. Magnetism and Magnetic Materials , 2001 .
[32] Rasmus Bro,et al. Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .
[33] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[34] A. V. Goncharov,et al. Kronecker product approximation of demagnetizing tensors for micromagnetics , 2010, J. Comput. Phys..
[35] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[36] J. L. Blue,et al. Using multipoles decreases computation time for magnetostatic self-energy , 1991 .