Robust Process Control Based on the Passivity Theorem
暂无分享,去创建一个
Weibiao Zhou | Jie Bao | Fu Yang Wang | Peter L. Lee | Fu. Y. Wang | P. Lee | J. Bao | Weibiao Zhou
[1] D. Bernstein,et al. Robust stabilization with positive real uncertainty: beyond the small gain theory , 1991 .
[2] G. Zames. On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .
[3] J. Willems. Dissipative dynamical systems part I: General theory , 1972 .
[4] P. Khargonekar,et al. State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .
[5] Mitsumasa Sato,et al. An L-lossless factorization approach to the positive real control problem , 1996 .
[6] M. Safonov,et al. Synthesis of positive real multivariable feedback systems , 1987 .
[7] P. Khargonekar,et al. Solution to the positive real control problem for linear time-invariant systems , 1994, IEEE Trans. Autom. Control..
[8] K. Goh,et al. Robust synthesis via bilinear matrix inequalities , 1996 .
[9] V. Balakrishnan. Linear matrix inequalities in robustness analysis with multipliers , 1995 .
[10] A. R. Amir-Moéz. Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations , 1956 .
[11] P. Khargonekar,et al. Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .
[12] J. Freudenberg,et al. Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .
[13] C. Scherer,et al. Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..
[14] B. Anderson. A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .
[15] D. Bernstein,et al. LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .
[16] Weibiao Zhou,et al. New robust stability criterion and robust controller synthesis , 1998 .