Radiative signature of the relativistic Kelvin-Helmholtz Instability

We present a particle-in-cell simulation of the relativistic Kelvin-Helmholtz Instability (KHI) that for the first time delivers angularly resolved radiation spectra of the particle dynamics during the formation of the KHI. This enables studying the formation of the KHI with unprecedented spatial, angular and spectral resolution. Our results are of great importance for understanding astrophysical jet formation and comparable plasma phenomena by relating the particle motion observed in the KHI to its radiation signature. The innovative methods presented here on the implementation of the particle-in-cell algorithm on graphic processing units can be directly adapted to any many-core parallelization of the particle-mesh method. With these methods we see a peak performance of 7.176 PFLOP/s (double-precision) plus 1.449 PFLOP/s (single-precision), an efficiency of 96% when weakly scaling from 1 to 18432 nodes, an efficiency of 68.92% and a speed up of 794 (ideal: 1152) when strongly scaling from 16 to 18432 nodes.

[1]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[2]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[3]  Paolo Ricci,et al.  Plasma turbulence in the scrape-off layer of tokamak devices , 2013 .

[4]  Sayantan Sur,et al.  MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters , 2011, Computer Science - Research and Development.

[5]  Guido Juckeland,et al.  A Generic Approach for Developing Highly Scalable Particle-Mesh Codes for GPUs , 2011 .

[6]  Lars D. Ludeking,et al.  Performance enhancement of MAGIC FDTD-PIC plasma-wave simulations using GPU processing , 2010, 2010 Abstracts IEEE International Conference on Plasma Science.

[7]  John W. Luginsland,et al.  On the elimination of numerical Cerenkov radiation in PIC simulations , 2004 .

[8]  A. Oberbeck,et al.  Ueber discontinuirliche Flüssigkeitsbewegungen , 1877 .

[9]  Department of Physics,et al.  IRREGULAR SLOSHING COLD FRONTS IN THE NEARBY MERGING GROUPS NGC 7618 AND UGC 12491: EVIDENCE FOR KELVIN–HELMHOLTZ INSTABILITIES , 2012, 1206.2355.

[10]  O A Hurricane,et al.  Validation of a turbulent Kelvin-Helmholtz shear layer model using a high-energy-density OMEGA laser experiment. , 2012, Physical review letters.

[11]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[12]  Anatoly Spitkovsky,et al.  SYNTHETIC SPECTRA FROM PARTICLE-IN-CELL SIMULATIONS OF RELATIVISTIC COLLISIONLESS SHOCKS , 2009, 0908.3193.

[13]  Erica M. Rutter,et al.  Comparison between Kelvin–Helmholtz instability experiments on OMEGA and simulation results using the CRASH code , 2013 .

[14]  A. Gruzinov,et al.  GRB: magnetic fields, cosmic rays, and emission from first principles? , 2008, 0803.1182.

[15]  J. W. Eastwood,et al.  The virtual particle electromagnetic particle-mesh method , 1991 .

[16]  Richard Pausch Electromagnetic Radiation from Relativistic Electrons as Characteristic Signature of their Dynamics , 2012 .

[17]  Luis Chacón,et al.  An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm , 2011, J. Comput. Phys..

[18]  Stepan Bulanov,et al.  Modeling classical and quantum radiation from laser-plasma accelerators , 2013 .

[19]  Markus J. Aschwanden,et al.  KELVIN–HELMHOLTZ INSTABILITY OF THE CME RECONNECTION OUTFLOW LAYER IN THE LOW CORONA , 2013 .

[20]  Samuel Williams,et al.  Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms , 2011, Parallel Comput..

[21]  Thomas Mussenbrock,et al.  Fine-sorting one-dimensional particle-in-cell algorithm with Monte-Carlo collisions on a graphics processing unit , 2011, Comput. Phys. Commun..

[22]  R. W. Hockney,et al.  Body-fitted electromagnetic PIC software for use on parallel computers , 1995 .

[23]  N. Woolsey,et al.  Kelvin-Helmholtz turbulence associated with collisionless shocks in laser produced plasmas. , 2012, Physical review letters.

[24]  Markus Boettcher,et al.  MAGNETIC FIELD GENERATION AND PARTICLE ENERGIZATION AT RELATIVISTIC SHEAR BOUNDARIES IN COLLISIONLESS ELECTRON–POSITRON PLASMAS , 2011, 1111.3326.

[25]  Mikhail V. Medvedev,et al.  RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION , 2010, 1003.1140.

[26]  Luca Spogli,et al.  Space weather challenges of the polar cap ionosphere , 2017, 1708.08617.

[27]  Gerald J. Fishman,et al.  Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields , 2011 .

[28]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .

[29]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[30]  I. T. Chapman,et al.  Toroidal velocity shear Kelvin–Helmholtz instabilities in strongly rotating tokamak plasmas , 2012 .

[31]  Nail A. Gumerov,et al.  Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU , 2008, J. Parallel Distributed Comput..

[32]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[33]  Scott Klasky,et al.  Efficient GPU Implementation for Particle in Cell Algorithm , 2011, 2011 IEEE International Parallel & Distributed Processing Symposium.

[34]  H. Sol,et al.  RADIATION FROM ACCELERATED PARTICLES IN RELATIVISTIC JETS WITH SHOCKS, SHEAR-FLOW, AND RECONNECTION , 2013, Gamma-ray Bursts: 15 Years of GRB Afterglows.

[35]  M. Temmer,et al.  THE KELVIN–HELMHOLTZ INSTABILITY AT CORONAL MASS EJECTION BOUNDARIES IN THE SOLAR CORONA: OBSERVATIONS AND 2.5D MHD SIMULATIONS , 2013, 1304.5884.

[36]  Message P Forum,et al.  MPI: A Message-Passing Interface Standard , 1994 .

[37]  J. Dawson Particle simulation of plasmas , 1983 .

[38]  Ivo F. Sbalzarini,et al.  A Software Framework for the Portable Parallelization of Particle-Mesh Simulations , 2006, Euro-Par.

[39]  S. F. Martins,et al.  LARGE-SCALE MAGNETIC FIELD GENERATION VIA THE KINETIC KELVIN–HELMHOLTZ INSTABILITY IN UNMAGNETIZED SCENARIOS , 2011, 1107.6037.

[40]  J. Drake,et al.  Secondary magnetic islands generated by the Kelvin-Helmholtz instability in a reconnecting current sheet. , 2012, Physical review letters.

[41]  H Burau,et al.  PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster , 2010, IEEE Transactions on Plasma Science.

[42]  Jacob Trier Frederiksen,et al.  photon-plasma: A modern high-order particle-in-cell code , 2012, 1211.4575.

[43]  Sergey Bastrakov,et al.  Particle-in-cell plasma simulation on heterogeneous cluster systems , 2012, J. Comput. Sci..

[44]  Benjamin Bergen,et al.  0.374 Pflop/s trillion-particle kinetic modeling of laser plasma interaction on roadrunner , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[45]  E. Alves,et al.  dc-Magnetic-field generation in unmagnetized shear flows. , 2012, Physical review letters.

[46]  J. A. Zensus,et al.  The long-term evolution of the parsec scale jet of the quasar 3C345 , 2012 .

[47]  J.-L. Vay,et al.  Simulation of beams or plasmas crossing at relaticistic velocity , 2007 .

[48]  Peter A. Delamere,et al.  Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn's magnetopause: Global survey , 2012 .

[49]  Michael C. Huang,et al.  Particle-in-cell simulations with charge-conserving current deposition on graphic processing units , 2010, J. Comput. Phys..

[50]  Baron Kelvin William Thomson,et al.  Baltimore Lectures On Molecular Dynamics And The Wave Theory Of Light , 1901 .

[51]  Peng Wang,et al.  THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF THE KELVIN–HELMHOLTZ INSTABILITY: MAGNETIC FIELD AMPLIFICATION BY A TURBULENT DYNAMO , 2008, 0811.3638.

[52]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[53]  S. Markidis,et al.  SWIFF: Space weather integrated forecasting framework , 2013 .

[54]  Robert Rankin,et al.  Dawn–dusk asymmetry in the Kelvin–Helmholtz instability at Mercury , 2013, Nature Communications.

[55]  M. Birkinshaw,et al.  PERIODIC STRUCTURE IN THE MEGAPARSEC-SCALE JET OF PKS 0637−752 , 2012, 1209.4637.