Second- and third-order spin-orbit contributions to nuclear shielding tensors

We present analytical calculations of the electronic spin–orbit interaction contribution to nuclear magnetic shielding tensors using linear and quadratic response theory. The effects of the Fermi contact and the spin-dipole interactions with both the one- and two-electron spin–orbit Hamiltonians, included as first-order perturbations, are studied for the H2X (X=O, S, Se, and Te), HX (X=F, Cl, Br, and I), and CH3X (X=F, Cl, Br, and I) systems using nonrelativistic multiconfiguration self-consistent field reference states. We also present the first correlated study of the spin–orbit-induced contributions to shielding tensors arising from the magnetic field dependence of the spin–orbit Hamiltonian. While the terms usually considered are formally calculated using third-order perturbation theory, the magnetic-field dependent spin-orbit Hamiltonian requires a second-order calculation only. For the hydrogen chalcogenides, we show that contributions often neglected in studies of spin–orbit effects on nuclear shie...

[1]  Notker Rösch,et al.  A transparent interpretation of the relativistic contribution to the N.M.R. ‘heavy atom chemical shift’ , 1987 .

[2]  M. Jaszuński,et al.  Rovibrationally averaged nuclear shielding constants in OCS. , 1998, Journal of magnetic resonance.

[3]  J. Flaud,et al.  High Resolution Study of the ν2, 2ν1, ν1+ ν3, and 2ν3Bands of Hydrogen Telluride: Determination of Equilibrium Rotational Constants and Structure , 1997 .

[4]  K. Mikkelsen,et al.  Calculation of nuclear shielding constants and magnetizabilities of the hydrogen fluoride molecule , 1996 .

[5]  S. Tashkun,et al.  A Refined Potential Energy Surface for the Electronic Ground State of the Water Molecule , 1994 .

[6]  Robin K. Harris,et al.  Encyclopedia of nuclear magnetic resonance , 1996 .

[7]  Calculation of nuclear magnetic shieldings. X. Relativistic effects , 1996 .

[8]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[9]  J. Olsen,et al.  Triplet excitation properties in large scale multiconfiguration linear response calculations , 1989 .

[10]  E. R. Andrew,et al.  Nuclear Magnetic Resonance , 1955 .

[11]  Robert L. Kuczkowski,et al.  Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods , 1979 .

[12]  H. Fukui,et al.  Calculation of nuclear magnetic shieldings. XII. Relativistic no-pair equation , 1998 .

[13]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[14]  K. Ruud,et al.  Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: A new 17 O absolute shielding scale , 1998 .

[15]  B. A. Hess,et al.  Spin–orbit corrections to NMR shielding constants from density functional theory. How important are the two-electron terms? , 1998 .

[16]  Kenneth Ruud,et al.  Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors , 1998 .

[17]  U. Edlund,et al.  Lithium-7, silicon-29, tin-119, and lead-207 NMR studies of phenyl-substituted Group 4 anions , 1987 .

[18]  Trygve Helgaker,et al.  Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals , 1994 .

[19]  Hiroshi Nakatsuji,et al.  Relativistic study of nuclear magnetic shielding constants: hydrogen halides , 1996 .

[20]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[21]  G. Lushington,et al.  Complete to second-orderab initio level calculations of electronicg-tensors , 1996 .

[22]  G. Schreckenbach,et al.  Density functional calculations of NMR chemical shifts and ESR g-tensors , 1998 .

[23]  H. Ågren,et al.  INTERNUCLEAR DISTANCE DEPENDENCE OF THE SPIN-ORBIT COUPLING CONTRIBUTIONS TO PROTON NMR CHEMICAL SHIFTS , 1998 .

[24]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[25]  A. Jameson,et al.  Concurrent 19F and 77Se or 19F and 125Te NMR T1 measurements for determination of 77Se and 125Te absolute shielding scales , 1987 .

[26]  L. Visscher,et al.  On the origin and contribution of the diamagnetic term in four-component relativistic calculations of magnetic properties , 1999 .

[27]  J. Olsen,et al.  Multiconfigurational quadratic response functions for singlet and triplet perturbations: The phosphorescence lifetime of formaldehyde , 1992 .

[28]  Hiroshi Nakatsuji,et al.  SPIN-ORBIT EFFECT ON THE MAGNETIC SHIELDING CONSTANT USING THE AB INITIO UHF METHOD , 1995 .

[29]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[30]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[31]  K. Mikkelsen,et al.  Solvent effects on nuclear shieldings and spin–spin couplings of hydrogen selenide , 1998 .

[32]  P. Pyykkö,et al.  How Do Spin–Orbit-Induced Heavy-Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin–Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds , 1998 .

[33]  Yosadara Ruiz-Morales,et al.  Calculation of125Te Chemical Shifts Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[34]  M. Kaupp,et al.  Density functional analysis of 13C and 1H chemical shifts and bonding in mercurimethanes and organomercury hydrides: The role of scalar relativistic, spin-orbit, and substituent effects , 1998 .

[35]  Jürgen Gauss,et al.  Rovibrationally averaged nuclear magnetic shielding tensors calculated at the coupled‐cluster level , 1996 .

[36]  W. G. Schneider,et al.  Proton Magnetic Resonance Chemical Shift of Free (Gaseous) and Associated (Liquid) Hydride Molecules , 1958 .

[37]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[38]  R. Wasylishen,et al.  An approximate absolute 33S nuclear magnetic shielding scale , 1984 .