A new decision-making approach for multiple criteria sorting with an imbalanced set of assignment examples

We propose a novel approach to address a multiple criteria sorting (MCS) problem with an imbalanced set of assignment examples. The approach employs a piecewise-linear additive value function as the preference model and adopts the disaggregation–aggregation paradigm to infer a sorting model from provided assignment examples on a set of reference alternatives. We utilize a hierarchical clustering algorithm and several linear programming models to identify reference alternatives that are active to develop the sorting model, so that inactive ones are eliminated from the whole set of reference alternatives. Then, in order to construct a balanced set of assignment examples, a balancing algorithm is proposed to balance active reference alternatives across categories. Finally, the sorting model is obtained by minimizing the sum of violations between values of active reference alternatives and corresponding category thresholds. Furthermore, the performance of the proposed approach is investigated on a hypothetical problem and several real data sets. The experimental results show that our approach is efficient to address the MCS problem with an imbalanced set of assignment examples.

[1]  Salvatore Greco,et al.  Multiple criteria sorting with a set of additive value functions , 2010, Eur. J. Oper. Res..

[2]  Eduardo Fernández,et al.  Core: A decision support system for regional competitiveness analysis based on multi-criteria sorting , 2013, Decis. Support Syst..

[3]  J. R. Figueira,et al.  Support A multiple criteria sorting method where each category is characterized by sev ‐ eral reference actions : The Electre Tri-nC method , 2011 .

[4]  C. Zopounidis,et al.  Building additive utilities for multi-group hierarchical discrimination: the M.H.Dis method , 2000 .

[5]  Caroline Maria de Miranda Mota,et al.  A multicriteria decision model for assigning priority classes to activities in project management , 2012, Ann. Oper. Res..

[6]  Isabella Maria Lami,et al.  Addressing the location of undesirable facilities through the Dominance based Rough Set Approach . , 2011 .

[7]  Constantin Zopounidis,et al.  Developing sorting models using preference disaggregation analysis: An experimental investigation , 2004, Eur. J. Oper. Res..

[8]  Irène Abi-Zeid,et al.  A Multi‐Criteria Classification Approach for Identifying Favourable Climates for Tourism , 2014 .

[9]  Constantin Zopounidis,et al.  Combining Market and Accounting-Based Models for Credit Scoring Using a Classification Scheme Based on Support Vector Machines , 2012, Appl. Math. Comput..

[10]  Inès Saad,et al.  Dominance-based rough set approach for groups in multicriteria classification problems , 2012, Decis. Support Syst..

[11]  Murat Köksalan,et al.  An interactive approach to multicriteria sorting for quasiconcave value functions , 2014 .

[12]  Silvia Angilella,et al.  The financing of innovative SMEs: A multicriteria credit rating model , 2013, Eur. J. Oper. Res..

[13]  Milosz Kadzinski,et al.  Preferential reducts and constructs in robust multiple criteria ranking and sorting , 2014, OR Spectr..

[14]  Kazim Baris Atici,et al.  A multiple criteria sorting methodology with multiple classifi cation criteria and an application to country risk evaluation , 2013 .

[15]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[16]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[17]  Jun Zheng,et al.  Learning criteria weights of an optimistic Electre Tri sorting rule , 2014, Comput. Oper. Res..

[18]  Keith W. Hipel,et al.  A case-based distance model for multiple criteria ABC analysis , 2008, Comput. Oper. Res..

[19]  Magdalene Marinaki,et al.  Optimization of nearest neighbor classifiers via metaheuristic algorithms for credit risk assessment , 2008, J. Glob. Optim..

[20]  Roman Słowiński,et al.  Modeling assignment-based pairwise comparisons within integrated framework for value-driven multiple criteria sorting , 2015, Eur. J. Oper. Res..

[21]  Dimitris Bertsimas,et al.  Classification and Regression via Integer Optimization , 2007, Oper. Res..

[22]  Murat Köksalan,et al.  An interactive sorting method for additive utility functions , 2009, Comput. Oper. Res..

[23]  Salvatore Greco,et al.  Rough set approach to multiple criteria classification with imprecise evaluations and assignments , 2009, Eur. J. Oper. Res..

[24]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[25]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Vincenzo Ilario Carbone,et al.  An Application of ELECTRE Tri to Support Innovation , 2014 .

[27]  Yang Wang,et al.  Boosting for Learning Multiple Classes with Imbalanced Class Distribution , 2006, Sixth International Conference on Data Mining (ICDM'06).

[28]  Xiuwu Liao,et al.  A classification approach based on the outranking model for multiple criteria ABC analysis , 2016 .

[29]  Milosz Kadzinski,et al.  Parametric evaluation of research units with respect to reference profiles , 2015, Decis. Support Syst..

[30]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[31]  Salvatore Greco,et al.  Global investing risk: a case study of knowledge assessment via rough sets , 2011, Ann. Oper. Res..

[32]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[33]  Constantin Zopounidis,et al.  A Multicriteria Outranking Modeling Approach for Credit Rating , 2011, Decis. Sci..

[34]  C. Zopounidis,et al.  Multiple criteria hierarchy process for sorting problems based on ordinal regression with additive value functions , 2015, Annals of Operations Research.

[35]  Patrick Meyer,et al.  Eliciting Electre Tri category limits for a group of decision makers , 2012, Eur. J. Oper. Res..

[36]  Anne Probst,et al.  Assessment of the effects of best environmental practices on reducing pesticide contamination in surface water, using multi-criteria modelling combined with a GIS , 2013 .

[37]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[38]  Milosz Kadzinski,et al.  Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP , 2012, Decis. Support Syst..

[39]  S. Greco,et al.  Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making , 2013 .

[40]  Antonio Moreno,et al.  On-line dynamic adaptation of fuzzy preferences , 2013, Inf. Sci..

[41]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[42]  Keith W. Hipel,et al.  Multiple-Criteria Sorting Using Case-Based Distance Models With an Application in Water Resources Management , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[43]  Claude Lamboray,et al.  ℱlow $\mathcal{S}$ ort: a flow-based sorting method with limiting or central profiles , 2008 .

[44]  J. Figueira,et al.  Robust multi-criteria sorting with the outranking preference model and characteristic profiles , 2015 .

[45]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[46]  Y. Zhang,et al.  Regularized estimation for preference disaggregation in multiple criteria decision making , 2009 .

[47]  Milosz Kadzinski,et al.  Post factum analysis for robust multiple criteria ranking and sorting , 2015, Journal of Global Optimization.

[48]  Constantin Zopounidis,et al.  Multicriteria Decision Aid Classification Methods , 2002 .

[49]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[50]  Juscelino Almeida Dias,et al.  Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 274 Electre Tri-c: a Multiple Criteria Sorting Method Based on Characteristic Reference Actions Electre Tri-c: a Multiple Criteria Sorting Method Based on Characteristic Reference Actions , 2022 .

[51]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.