Network medicine : a network-based approach to human disease

Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular and intercellular network that links tissue and organ systems. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships among apparently distinct (patho)phenotypes. Advances in this direction are essential for identifying new disease genes, for uncovering the biological significance of disease-associated mutations identified by genome-wide association studies and full-genome sequencing, and for identifying drug targets and biomarkers for complex diseases.

[1]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[2]  E. Wheelock Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin , 1965, Science.

[3]  S. Cooperband,et al.  Immune Specific Induction of Interferon Production in Cultures of Human Blood Lymphocytes , 1969, Science.

[4]  V. McKusick Mendelian inheritance in man , 1971 .

[5]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[6]  Teri A. Crosby,et al.  How to Detect and Handle Outliers , 1993 .

[7]  Pathogenesis of Venous Thrombosis: A New Insight , 1997, Cardiovascular surgery.

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[10]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[11]  Anton J. Enright,et al.  Protein interaction maps for complete genomes based on gene fusion events , 1999, Nature.

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[14]  D. Fell,et al.  The small world of metabolism , 2000, Nature Biotechnology.

[15]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[16]  D. Valle,et al.  Online Mendelian Inheritance In Man (OMIM) , 2000, Human mutation.

[17]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[18]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[19]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[20]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[21]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[22]  Patrick L. McGeer,et al.  Inflammation, autotoxicity and Alzheimer disease , 2001, Neurobiology of Aging.

[23]  P. Libby,et al.  Inflammation and thrombosis: the clot thickens. , 2001, Circulation.

[24]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[25]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Wagner The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. , 2001, Molecular biology and evolution.

[28]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[29]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Redner,et al.  Infinite-order percolation and giant fluctuations in a protein interaction network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[32]  A. E. Hirsh,et al.  Evolutionary Rate in the Protein Interaction Network , 2002, Science.

[33]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[34]  Eugene V Koonin,et al.  No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly , 2003, BMC Evolutionary Biology.

[35]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[36]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[37]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  Paul M Ridker,et al.  C-Reactive Protein: A Simple Test to Help Predict Risk of Heart Attack and Stroke , 2003, Circulation.

[39]  J. Lehár,et al.  Systematic discovery of multicomponent therapeutics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[41]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[42]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[43]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[44]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[45]  T. Gilliam,et al.  Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[48]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[49]  H. Brunner,et al.  From syndrome families to functional genomics , 2004, Nature Reviews Genetics.

[50]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  T. Ashburn,et al.  Drug repositioning: identifying and developing new uses for existing drugs , 2004, Nature Reviews Drug Discovery.

[52]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[54]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[55]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  H. Lehrach,et al.  A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. , 2004, Molecular cell.

[57]  A. Reynolds,et al.  Rational siRNA design for RNA interference , 2004, Nature Biotechnology.

[58]  Stephen S Fong,et al.  Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes , 2004, Nature Genetics.

[59]  G. Church,et al.  A global view of pleiotropy and phenotypically derived gene function in yeast , 2005, Molecular systems biology.

[60]  Ambuj K. Singh,et al.  Analysis of protein-protein interaction networks using random walks , 2005, BIOKDD.

[61]  John D. Storey,et al.  A network-based analysis of systemic inflammation in humans , 2005, Nature.

[62]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[63]  Shinichiro Wachi,et al.  Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues , 2005, Bioinform..

[64]  A. Clauset Finding local community structure in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Erik M Bollt,et al.  Local method for detecting communities. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[67]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[68]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[70]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[71]  Mona Singh,et al.  Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps , 2005, ISMB.

[72]  Péter Csermely,et al.  The efficiency of multi-target drugs: the network approach might help drug design. , 2004, Trends in pharmacological sciences.

[73]  Charlotte M. Deane,et al.  Protein protein interactions, evolutionary rate, abundance and age , 2006, BMC Bioinformatics.

[74]  S. Kahn,et al.  The relationship between inflammation and venous thrombosis , 2005, Thrombosis and Haemostasis.

[75]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[76]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[77]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[78]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[79]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[80]  C. Wijmenga,et al.  Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. , 2006, American journal of human genetics.

[81]  Yongjin Li,et al.  Discovering disease-genes by topological features in human protein-protein interaction network , 2006, Bioinform..

[82]  G. Vriend,et al.  A text-mining analysis of the human phenome , 2006, European Journal of Human Genetics.

[83]  B. Berger,et al.  Herpesviral Protein Networks and Their Interaction with the Human Proteome , 2006, Science.

[84]  Christine E Seidman,et al.  A Contemporary Approach to Hypertrophic Cardiomyopathy , 2006, Circulation.

[85]  B. Snel,et al.  Predicting disease genes using protein–protein interactions , 2006, Journal of Medical Genetics.

[86]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[87]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[88]  K Mizuguchi,et al.  Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia , 2007, Molecular Psychiatry.

[89]  J. Collins,et al.  A network biology approach to prostate cancer , 2007, Molecular systems biology.

[90]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[91]  L. Moran,et al.  Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation , 2008, Neurogenetics.

[92]  Albert-László Barabási,et al.  Distribution of node characteristics in complex networks , 2007, Proceedings of the National Academy of Sciences.

[93]  Paul Martin,et al.  The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. , 2007, The Journal of investigative dermatology.

[94]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[95]  A. Barabasi,et al.  Network medicine--from obesity to the "diseasome". , 2007, The New England journal of medicine.

[96]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[97]  A. Rzhetsky,et al.  Probing genetic overlap among complex human phenotypes , 2007, Proceedings of the National Academy of Sciences.

[98]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[99]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[100]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[101]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[102]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[103]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[104]  A. Vazquez,et al.  Epstein–Barr virus and virus human protein interaction maps , 2007, Proceedings of the National Academy of Sciences.

[105]  J. Inazawa,et al.  Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia , 2007, Journal of Human Genetics.

[106]  S. Kasif,et al.  Network-Based Analysis of Affected Biological Processes in Type 2 Diabetes Models , 2007, PLoS genetics.

[107]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[108]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[109]  Garry P Nolan,et al.  What's wrong with drug screening today. , 2007, Nature chemical biology.

[110]  A. Barabasi,et al.  Human disease classification in the postgenomic era: A complex systems approach to human pathobiology , 2007, Molecular systems biology.

[111]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[112]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[113]  T. Gilliam,et al.  Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. , 2008, Genome research.

[114]  Roded Sharan,et al.  A Propagation-based Algorithm for Inferring Gene-Disease Assocations , 2008, German Conference on Bioinformatics.

[115]  T. Pawson,et al.  Network medicine , 2008, FEBS letters.

[116]  Patrick Ruch,et al.  Mapping proteins to disease terminologies: from UniProt to MeSH , 2008, BMC Bioinformatics.

[117]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[118]  P. Robinson,et al.  Walking the interactome for prioritization of candidate disease genes. , 2008, American journal of human genetics.

[119]  D. Vitkup,et al.  Network properties of genes harboring inherited disease mutations , 2008, Proceedings of the National Academy of Sciences.

[120]  Q. Cui,et al.  An Analysis of Human MicroRNA and Disease Associations , 2008, PloS one.

[121]  Antonio Reverter,et al.  Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes , 2008, BioData Mining.

[122]  Heidi L Rehm,et al.  Shared genetic causes of cardiac hypertrophy in children and adults. , 2008, The New England journal of medicine.

[123]  Michael Q. Zhang,et al.  Network-based global inference of human disease genes , 2008, Molecular systems biology.

[124]  Francisco S. Roque,et al.  A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes , 2008, Proceedings of the National Academy of Sciences.

[125]  L. Staudt,et al.  Stromal gene signatures in large-B-cell lymphomas. , 2008, The New England journal of medicine.

[126]  J. Dopazo,et al.  Biological processes, properties and molecular wiring diagrams of candidate low-penetrance breast cancer susceptibility genes , 2008, BMC Medical Genomics.

[127]  Stijn van Dongen,et al.  Graph Clustering Via a Discrete Uncoupling Process , 2008, SIAM J. Matrix Anal. Appl..

[128]  Konstantinos N. Malizos,et al.  Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks , 2008, PloS one.

[129]  Ohad Parnes,et al.  Inflammation , 2008, The Lancet.

[130]  Albert-László Barabási,et al.  Scale-free networks , 2008, Scholarpedia.

[131]  P. Turnbaugh,et al.  An Invitation to the Marriage of Metagenomics and Metabolomics , 2008, Cell.

[132]  Angela P. Presson,et al.  Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome , 2008, BMC Systems Biology.

[133]  Hawoong Jeong,et al.  A protein interaction network associated with asthma. , 2008, Journal of theoretical biology.

[134]  Bor-Sen Chen,et al.  Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets , 2008, BMC Systems Biology.

[135]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[136]  Hyeong Jun An,et al.  Estimating the size of the human interactome , 2008, Proceedings of the National Academy of Sciences.

[137]  Eric E Schadt,et al.  Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. , 2009 .

[138]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[139]  Krin A. Kay,et al.  The implications of human metabolic network topology for disease comorbidity , 2008, Proceedings of the National Academy of Sciences.

[140]  A. Barabasi,et al.  Predicting synthetic rescues in metabolic networks , 2008, Molecular systems biology.

[141]  Weixiong Zhang,et al.  Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases , 2008, Genome Biology.

[142]  Tony Pawson,et al.  NetworKIN: a resource for exploring cellular phosphorylation networks , 2007, Nucleic Acids Res..

[143]  J. Lehár,et al.  High-order combination effects and biological robustness , 2008, Molecular systems biology.

[144]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[145]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[146]  L. Lai,et al.  Finding multiple target optimal intervention in disease-related molecular network , 2008, Molecular systems biology.

[147]  R. Serra,et al.  Gene expression time-series analysis of Camptothecin effects in U87-MG and DBTRG-05 glioblastoma cell lines , 2008, Molecular Cancer.

[148]  S. Horvath,et al.  Variations in DNA elucidate molecular networks that cause disease , 2008, Nature.

[149]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[150]  Zhi Hu,et al.  Integrated analysis of breast cancer cell lines reveals unique signaling pathways , 2009, Genome Biology.

[151]  Sergio E Baranzini,et al.  The genetics of autoimmune diseases: a networked perspective. , 2009, Current opinion in immunology.

[152]  A. Barabasi,et al.  The impact of cellular networks on disease comorbidity , 2009, Molecular systems biology.

[153]  Ariel S. Schwartz,et al.  Cost effective strategies for completing the Interactome , 2008, Nature Methods.

[154]  P. Gaulard,et al.  Molecular classification of T-cell lymphomas. , 2009, Critical reviews in oncology/hematology.

[155]  Rod K. Nibbe,et al.  Discovery and Scoring of Protein Interaction Subnetworks Discriminative of Late Stage Human Colon Cancer*S , 2009, Molecular & Cellular Proteomics.

[156]  S. Friend,et al.  A network view of disease and compound screening , 2009, Nature Reviews Drug Discovery.

[157]  D. Goldstein Common genetic variation and human traits. , 2009, The New England journal of medicine.

[158]  G. Brewer Drug development for orphan diseases in the context of personalized medicine. , 2009, Translational research : the journal of laboratory and clinical medicine.

[159]  Doheon Lee,et al.  Analysis of AML genes in dysregulated molecular networks , 2009, BMC Bioinformatics.

[160]  Yingming Zhao,et al.  Modification‐specific proteomics: Strategies for characterization of post‐translational modifications using enrichment techniques , 2009, Proteomics.

[161]  Andrew L. Hopkins,et al.  Drug discovery: Predicting promiscuity , 2009, Nature.

[162]  Alexei Vazquez,et al.  Optimal drug combinations and minimal hitting sets , 2009, BMC Systems Biology.

[163]  M. Vidal,et al.  Edgetic perturbation models of human inherited disorders , 2009, Molecular systems biology.

[164]  G. Cao,et al.  Identification of novel hub genes associated with liver metastasis of gastric cancer , 2009, International journal of cancer.

[165]  Albert-László Barabási,et al.  A Dynamic Network Approach for the Study of Human Phenotypes , 2009, PLoS Comput. Biol..

[166]  K. Basso,et al.  Toward a systems biology approach to investigate cellular networks in normal and malignant B cells , 2009, Leukemia.

[167]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[168]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[169]  Alan F. Scott,et al.  McKusick's Online Mendelian Inheritance in Man (OMIM®) , 2008, Nucleic Acids Res..

[170]  J. Hirschhorn Genomewide association studies--illuminating biologic pathways. , 2009, The New England journal of medicine.

[171]  Inyoul Y. Lee,et al.  A systems approach to prion disease , 2009, Molecular systems biology.

[172]  Atul J. Butte,et al.  The "etiome": identification and clustering of human disease etiological factors , 2009, BMC Bioinformatics.

[173]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[174]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[175]  A. Barabasi,et al.  An empirical framework for binary interactome mapping , 2008, Nature Methods.

[176]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[177]  B. Starfield,et al.  Defining Comorbidity: Implications for Understanding Health and Health Services , 2009, The Annals of Family Medicine.

[178]  Susumu Goto,et al.  Systems biology approaches and pathway tools for investigating cardiovascular disease. , 2009, Molecular bioSystems.

[179]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[180]  P. Aloy,et al.  A network medicine approach to human disease , 2009, FEBS letters.

[181]  Silke Szymczak,et al.  Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility , 2010, PloS one.

[182]  Nevan J. Krogan,et al.  Quantitative Genetic Interactions Reveal Biological Modularity , 2010, Cell.

[183]  Joel Dudley,et al.  Network-Based Elucidation of Human Disease Similarities Reveals Common Functional Modules Enriched for Pluripotent Drug Targets , 2010, PLoS Comput. Biol..

[184]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[185]  D. Galas,et al.  Diseases as network perturbations. , 2010, Current opinion in biotechnology.

[186]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[187]  A. Barabasi,et al.  Blueprint for antimicrobial hit discovery targeting metabolic networks , 2010, Proceedings of the National Academy of Sciences.

[188]  Christopher Lawrence,et al.  DEGENERATION , 2020, Side Effects May Include Strangers.

[189]  Gary D Bader,et al.  Dynamic interaction networks in a hierarchically organized tissue , 2010, Molecular systems biology.

[190]  Zhiwei Wang,et al.  Proof of Concept: Network and Systems Biology Approaches Aid in the Discovery of Potent Anticancer Drug Combinations , 2010, Molecular Cancer Therapeutics.

[191]  Francisco S. Roque,et al.  Dissecting spatio-temporal protein networks driving human heart development and related disorders , 2010, Molecular systems biology.

[192]  Y. Pekarsky,et al.  Reprogramming of miRNA networks in cancer and leukemia. , 2010, Genome research.

[193]  L. Stein,et al.  A human functional protein interaction network and its application to cancer data analysis , 2010, Genome Biology.

[194]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[195]  Shiwen Zhao,et al.  Network-Based Relating Pharmacological and Genomic Spaces for Drug Target Identification , 2010, PloS one.

[196]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[197]  Kiran Raosaheb Patil,et al.  Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes , 2010, PLoS Comput. Biol..

[198]  Carl Kingsford,et al.  The power of protein interaction networks for associating genes with diseases , 2010, Bioinform..

[199]  B. Palsson,et al.  Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions , 2010, Molecular systems biology.

[200]  Adilson E Motter,et al.  Improved network performance via antagonism: From synthetic rescues to multi-drug combinations , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[201]  Y. van de Peer,et al.  Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules , 2010, PloS one.

[202]  David E Hill,et al.  High-quality binary interactome mapping. , 2010, Methods in enzymology.

[203]  Søren Brunak,et al.  Deciphering Diseases and Biological Targets for Environmental Chemicals using Toxicogenomics Networks , 2010, PLoS Comput. Biol..

[204]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[205]  A. Vinayagam,et al.  A Directed Protein Interaction Network for Investigating Intracellular Signal Transduction , 2011, Science Signaling.

[206]  David E Hill,et al.  next-generation sequencing to generate interactome datasets , 2011 .

[207]  Mark N. Wass,et al.  Challenges for the prediction of macromolecular interactions. , 2011, Current opinion in structural biology.

[208]  F. Pammolli,et al.  The productivity crisis in pharmaceutical R&D , 2011, Nature Reviews Drug Discovery.

[209]  E. Guney,et al.  Exploiting Protein-Protein Interaction Networks for Genome-Wide Disease-Gene Prioritization , 2012, PloS one.

[210]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[211]  K. Aksu,et al.  Inflammation-induced thrombosis: mechanisms, disease associations and management. , 2012, Current pharmaceutical design.

[212]  Deok-Sun Lee,et al.  Viral Perturbations of Host Networks Reflect Disease Etiology , 2012, PLoS Comput. Biol..

[213]  C. Gieger,et al.  Analyzing Illumina Gene Expression Microarray Data from Different Tissues: Methodological Aspects of Data Analysis in the MetaXpress Consortium , 2012, PloS one.