Enhanced non-Markovian behavior in quantum walks with Markovian disorder

Non-Markovian quantum effects are typically observed in systems interacting with structured reservoirs. Discrete-time quantum walks are prime example of such systems in which, quantum memory arises due to the controlled interaction between the coin and position degrees of freedom. Here we show that the information backflow that quantifies memory effects can be enhanced when the particle is subjected to uncorrelated static or dynamic disorder. The presence of disorder in the system leads to localization effects in 1-dimensional quantum walks. We shown that it is possible to infer about the nature of localization in position space by monitoring the information backflow in the reduced system. Further, we study other useful properties of quantum walk such as entanglement, interference and its connection to quantum non-Markovianity.

[1]  Edward Farhi,et al.  A Quantum Algorithm for the Hamiltonian NAND Tree , 2008, Theory Comput..

[2]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[3]  Frédéric Magniez,et al.  Quantum algorithms for the triangle problem , 2005, SODA '05.

[4]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[5]  C. M. Chandrashekar Disorder induced localization and enhancement of entanglement in one- and two-dimensional quantum walks , 2012 .

[6]  Norio Kawakami,et al.  Topological phases and delocalization of quantum walks in random environments , 2011, 1103.5545.

[7]  A. P'erez,et al.  Asymptotic properties of the Dirac quantum cellular automaton , 2015, 1504.07418.

[8]  C. M. Chandrashekar,et al.  Localized quantum walks as secured quantum memory , 2013, 1307.5922.

[9]  T. M. Stace,et al.  Experimental quantum verification in the presence of temporally correlated noise , 2017, 1706.03787.

[10]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[11]  R. Feynman Quantum mechanical computers , 1986 .

[12]  F. Ciccarello,et al.  Quantum non-Markovianity induced by Anderson localization , 2016, Scientific Reports.

[13]  Giuseppe Di Molfetta,et al.  The Elephant Quantum Walk , 2017, Physical Review A.

[14]  Leigh S. Martin,et al.  Observing Topological Invariants Using Quantum Walks in Superconducting Circuits , 2016, 1610.03069.

[15]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[16]  Sanjoy Mandal,et al.  Neutrino oscillations in discrete-time quantum walk framework , 2016, The European Physical Journal C.

[17]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[18]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[19]  Stefano Facchini,et al.  Quantum walking in curved spacetime , 2015, Quantum Inf. Process..

[20]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[21]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Claudia Benedetti,et al.  Non-Markovian continuous-time quantum walks on lattices with dynamical noise , 2015, 1510.08652.

[23]  Giuseppe Di Molfetta,et al.  Quantum walks as simulators of neutrino oscillations in a vacuum and matter , 2016, 1607.00529.

[24]  Harry Buhrman,et al.  Quantum verification of matrix products , 2004, SODA '06.

[25]  Fabrice Debbasch,et al.  Quantum walks as massless Dirac Fermions in curved Space-Time , 2012, 1212.5821.

[26]  Neil B. Lovett,et al.  Universal quantum computation using the discrete-time quantum walk , 2009, 0910.1024.

[27]  R. Srikanth,et al.  Symmetry-noise interplay in a quantum walk on an n-cycle , 2008, 0803.4453.

[28]  K. R. Parthasarathy,et al.  The Passage From Random Walk to Diffusion in Quantum Probability , 1988 .

[29]  P. Haikka,et al.  Non-Markovian Quantum Probes , 2014, Open Syst. Inf. Dyn..

[30]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[31]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[32]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[33]  anonymous,et al.  Comprehensive review , 2019 .

[34]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[35]  Tian Chen,et al.  Quantum sensing of noises in one and two dimensional quantum walks , 2017, Scientific Reports.

[36]  C. M. Chandrashekar Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices , 2013, Scientific Reports.

[37]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[38]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[39]  Christen Herbert Fleming,et al.  Non-Markovian Dynamics of Open Quantum Systems , 2011 .

[40]  Giuseppe Di Molfetta,et al.  Quantum Walks in artificial electric and gravitational Fields , 2013, ArXiv.

[41]  Frederick W. Strauch,et al.  Relativistic quantum walks , 2006 .

[42]  Jyrki Piilo,et al.  Discrete dynamics and non-Markovianity , 2015, 1509.04231.

[43]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[44]  Alain Joye,et al.  Dynamical localization for d-dimensional random quantum walks , 2012, Quantum Inf. Process..

[45]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[46]  R. Srikanth,et al.  Symmetries and noise in quantum walk , 2007 .

[47]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[48]  A. Romanelli,et al.  Chirality asymptotic behavior and non-Markovianity in quantum walks on a line , 2014, 1401.3243.

[49]  R. Srikanth,et al.  Relationship between quantum walks and relativistic quantum mechanics , 2010, 1003.4656.