Novel Multicode-Processing Platform for Wavelength-Hopping Time-Spreading Optical CDMA: A Path to Device Miniaturization and Enhanced Network Functionality

Cost-effective, robust, code-processing photonic devices are essential for the adoption of optical code-division multiple access in future commercial and military network applications. Progress in several technology platforms for code processing is summarized. In particular, we focus on developments in a technology platform based on holographic Bragg reflectors that allow the processing of multiple codes simultaneously, with low footprint. Results of simultaneous en/decoding of two wavelength-hopping time-spreading codes using a single device are presented. Several applications are presented where multicode-processing capability can result in significant simplification of node and system architectures and, thus, provide feasible implementation of schemes to obtain enhanced network performance such as security and scalability.

[1]  B. Jalali,et al.  Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA , 2000, IEEE Photonics Technology Letters.

[2]  Namkyoo Park,et al.  Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines , 2000, IEEE Photonics Technology Letters.

[3]  Yue-Kai Huang,et al.  Integrated holographic encoder for wavelength-hopping/time-spreading optical CDMA , 2005, IEEE Photonics Technology Letters.

[4]  T.W. Mossberg,et al.  Demonstration of all-fiber sparse lightwave CDMA based on temporal phase encoding , 1999, IEEE Photonics Technology Letters.

[5]  Armando N. Pinto,et al.  Optical Networks: A Practical Perspective, 2nd Edition , 2002 .

[6]  Mohsen Kavehrad,et al.  Experimental optical CDMA system based on spectral amplitude encoding of noncoherent broadband sources , 1995, Other Conferences.

[7]  Paul R. Prucnal,et al.  OCDMA platform for avionics applications , 2006 .

[8]  M. Tetu,et al.  Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid , 2000, Journal of Lightwave Technology.

[9]  P. W. Smith,et al.  Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings. , 1999, Applied optics.

[10]  Ivan Andonovic,et al.  Wavelength hopping/time spreading code division multiple access systems , 1994 .

[11]  Tarek S. El-Bawab,et al.  Optical Switching , 2006 .

[12]  C. Burrus,et al.  Monolithic eight-wavelength demultiplexed receiver for dense WDM applications , 1995, IEEE Photonics Technology Letters.

[13]  L.R. Chen Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA , 2001, IEEE Photonics Technology Letters.

[14]  D. Iazikov,et al.  Integrated holographic filters for flat-passband optical multiplexers , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[15]  Ananth Selvarajan,et al.  Design of a new family of two-dimensional codes for fiber-optic CDMA networks , 1998 .

[16]  L. Chan,et al.  Etched cavity InGaAsP-InP waveguide Fabry-Perot filter tunable by current injection , 1999 .

[17]  Ken-ichi Sato,et al.  Design and performance of an optical path cross-connect system based on wavelength path concept , 1996 .

[18]  C. Greiner,et al.  Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors. , 2005, Optics letters.

[19]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[20]  Edward H. Sargent,et al.  Lighting the local area: optical code-division multiple access and quality of service provisioning , 2000, IEEE Netw..

[21]  Guu-chang Yang,et al.  Multiple-length multiple-wavelength optical orthogonal codes for optical CDMA systems supporting multirate multimedia services , 2004, IEEE Journal on Selected Areas in Communications.

[22]  Ivan Andonovic,et al.  Incoherent asynchronous optical CDMA using gold codes , 1994 .

[23]  I. Glesk,et al.  All-optical OCDMA code-drop unit for transparent ring networks , 2005, IEEE Photonics Technology Letters.

[24]  K. Kitayama,et al.  OCDMA over WDM PON-solution path to gigabit-symmetric FTTH , 2006, Journal of Lightwave Technology.

[25]  Heather M. Liddell,et al.  Optics of Thin Films , 1976 .

[26]  Periklis Petropoulos,et al.  A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction , 2002 .

[27]  T.H. Shake,et al.  Security performance of optical CDMA Against eavesdropping , 2005, Journal of Lightwave Technology.

[28]  K. McGreer,et al.  Demultiplexer with 120 channels and 0.29-nm channel spacing , 1998, IEEE Photonics Technology Letters.

[29]  R. Fischer,et al.  Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network , 2005, IEEE Photonics Technology Letters.

[30]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[31]  G. Cincotti,et al.  Characterization of a full encoder/decoder in the AWG configuration for code-based photonic routers-part I: modeling and design , 2006, Journal of Lightwave Technology.

[32]  Wing C. Kwong,et al.  Prime Codes with Applications to CDMA Optical and Wireless Networks , 2002 .

[33]  S. Sumriddetchkajorn,et al.  A reconfigurable thin-film filter-based 2 x 2 add-drop fiber-optic switch structure , 2003, IEEE Photonics Technology Letters.

[34]  P.R. Prucnal,et al.  Demonstration of an eight-user 115-Gchip/s incoherent OCDMA system using supercontinuum generation and optical time gating , 2006, IEEE Photonics Technology Letters.

[35]  K. Hill,et al.  Fiber Bragg grating technology fundamentals and overview , 1997 .

[36]  J.P. Heritage,et al.  Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications , 2000, Journal of Lightwave Technology.

[37]  R. Parmentier,et al.  Toward tunable thin-film filters for wavelength division multiplexing applications. , 2002, Applied optics.

[38]  Richard J. Hughes,et al.  Experimental investigation of quantum key distribution through transparent optical switch elements , 2003, IEEE Photonics Technology Letters.

[39]  Paul R. Prucnal,et al.  Analysis of a rapidly reconfigurable multicast capable photonic switched interconnect , 2005 .

[40]  Ivo Rendina,et al.  Silicon Fabry–Perot filter for WDM systems channels monitoring , 2000 .

[41]  L. Rusch,et al.  Experimental demonstration of frequency-encoded optical CDMA using superimposed fiber Bragg gratings , 2003 .

[42]  A. Nishiki,et al.  10 Gb/s x 2 ch signal unrepeated transmission over 100 km of data rate enhanced time-spread/wavelength-hopping OCDM using 2.5-Gb/s-FBG en/decoder , 2003, IEEE Photonics Technology Letters.

[43]  Guu-chang Yang,et al.  Shifted carrier-hopping prime codes for multicode keying in wavelength-time O-CDMA , 2005, IEEE Transactions on Communications.

[44]  B. Wu,et al.  Secure communications over a public fiber-optical network , 2006, QELS 2006.

[45]  Kung-Li Deng,et al.  A 1024-channel fast tunable delay line for ultrafast all-optical TDM networks , 1997, IEEE Photonics Technology Letters.

[46]  Ivan Glesk Demonstration of differentiated service provisioning with 4-node 253G chip/s fast frequency-hopping time-spreading OCDMA , 2004 .

[47]  R. Parmentier,et al.  Piezoelectric tantalum pentoxide studied for optical tunable applications. , 2002, Applied optics.

[48]  A. Agarwal,et al.  Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA , 2005, Journal of Lightwave Technology.

[49]  Uziel Koren,et al.  Scalable 32 channel chirped-pulse WDM source , 1996 .

[50]  R. Kashyap Fiber Bragg Gratings , 1999 .