An extended biphasic model for charged hydrated tissues with application to the intervertebral disc

Finite element models for hydrated soft biological tissue are numerous but often exhibit certain essential deficiencies concerning the reproduction of relevant mechanical and electro-chemical responses. As a matter of fact, singlephasic models can never predict the interstitial fluid flow or related effects like osmosis. Quite a few models have more than one constituent, but are often restricted to the small-strain domain, are not capable of capturing the intrinsic viscoelasticity of the solid skeleton, or do not account for a collagen fibre reinforcement. It is the goal of this contribution to overcome these drawbacks and to present a thermodynamically consistent model, which is formulated in a very general way in order to reproduce the behaviour of almost any charged hydrated tissue. Herein, the Theory of Porous Media (TPM) is applied in combination with polyconvex Ogden-type material laws describing the anisotropic and intrinsically viscoelastic behaviour of the solid matrix on the basis of a generalised Maxwell model. Moreover, other features like the deformation-dependent permeability, the possibility to include inhomogeneities like varying fibre alignment and behaviour, or osmotic effects based on the simplifying assumption of Lanir are also included. Finally, the human intervertebral disc is chosen as a representative for complex soft biological tissue behaviour. In this regard, two numerical examples will be presented with focus on the viscoelastic and osmotic capacity of the model.

[1]  Bernd Markert,et al.  Parallel Solution Methods for Porous Media Models in Biomechanics , 2005 .

[2]  P. Neff,et al.  Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .

[3]  M. Fröhlich,et al.  Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus , 2004 .

[4]  Christian Wieners,et al.  Parallel 3-d simulations of a twophasic porous media model in spinemechanics , 2008 .

[5]  A Shirazi-Adl,et al.  A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. , 1986, Journal of biomechanics.

[6]  A. Shirazi-Adl Nonlinear stress analysis of the whole lumbar spine in torsion--mechanics of facet articulation. , 1994, Journal of biomechanics.

[7]  F. Marchand,et al.  Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus , 1990, Spine.

[8]  C. Wieners Taylor-Hood elements in 3D , 2003 .

[9]  B. Markert Porous media viscoelasticity with application to polymeric foams , 2005 .

[10]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[11]  J S Wu,et al.  Clarification of the mechanical behaviour of spinal motion segments through a three-dimensional poroelastic mixed finite element model. , 1996, Medical engineering & physics.

[12]  K. Terzaghi,et al.  From theory to practice in soil mechanics , 1960 .

[13]  V C Mow,et al.  Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus , 1996, Spine.

[14]  Bernhard A. Schrefler,et al.  The effective stress principle: Incremental or finite form? , 1996 .

[15]  V C Mow,et al.  The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. , 1997, Journal of biomechanics.

[16]  JD Jan Janssen,et al.  A validation of the quadriphasic mixture theory for intervertebral disc tissue , 1997 .

[17]  A Shirazi-Adl,et al.  Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models. , 2003, Biorheology.

[18]  F. G. Donnan Theorie der Membrangleichgewichte und Membranpotentiale bei Vorhandensein von nicht dialysierenden Elektrolyten. Ein Beitrag zur physikalisch‐chemischen Physiologie. , 1911, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[19]  Martin H Krag,et al.  Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. , 2003, Journal of biomechanical engineering.

[20]  A Shirazi-Adl,et al.  Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. , 2006, Journal of biomechanics.

[21]  Randal P Ching,et al.  Hydraulic resistance and permeability in human lumbar vertebral bodies. , 2002, Journal of biomechanical engineering.

[22]  Gerhard A. Holzapfel,et al.  An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies , 2001 .

[23]  J. Boehler,et al.  Applications of Tensor Functions in Solid Mechanics , 1987 .

[24]  Joachim Bluhm,et al.  Porous media : theory, experiments and numerical applications , 2002 .

[25]  N Dhillon,et al.  The internal mechanics of the intervertebral disc under cyclic loading. , 2002, Journal of biomechanics.

[26]  W Ehlers,et al.  A linear viscoelastic biphasic model for soft tissues based on the Theory of Porous Media. , 2001, Journal of biomechanical engineering.

[27]  Bernd Markert,et al.  A constitutive approach to 3-d nonlinear fluid flow through finite deformable porous continua , 2007 .

[28]  C. Schmidt,et al.  Back Pain in the German Adult Population: Prevalence, Severity, and Sociodemographic Correlates in a Multiregional Survey , 2007, Spine.

[29]  Fpt Frank Baaijens,et al.  3D FE implementation of an incompressible quadriphasic mixture model , 2003 .

[30]  A. Hargens Tissue Nutrition and Viability , 2012, Springer US.

[31]  V. Mow,et al.  Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. , 1998, Journal of biomechanics.

[32]  W. Ehlers,et al.  Swelling phenomena of hydrated porous materials , 2005 .

[33]  J. Urban,et al.  Intervertebral Disc Nutrition as Related to Spinal Movements and Fusion , 1986 .

[34]  Gerhard A Holzapfel,et al.  Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. , 2004, Journal of biomechanical engineering.

[35]  V C Mow,et al.  Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. , 1998, Journal of biomechanics.

[36]  J. P. Boehler,et al.  Introduction to the Invariant Formulation of Anisotropic Constitutive Equations , 1987 .

[37]  D. Eyre,et al.  Biochemistry of the intervertebral disc. , 1979, International review of connective tissue research.

[38]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[39]  T. Oegema,et al.  Biochemistry of the intervertebral disc. , 1993, Clinics in sports medicine.

[40]  V. Mow,et al.  A MIXED FINITE ELEMENT FORMULATION OF TRIPHASIC MECHANO-ELECTROCHEMICAL THEORY FOR CHARGED, HYDRATED BIOLOGICAL SOFT TISSUES , 1999 .

[41]  Y Lanir,et al.  Biorheology and fluid flux in swelling tissues. I. Bicomponent theory for small deformations, including concentration effects. , 1987, Biorheology.

[42]  S. Klisch,et al.  A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. , 2000, Journal of biomechanical engineering.

[43]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[44]  A Shirazi-Adl,et al.  Poroelastic creep response analysis of a lumbar motion segment in compression. , 1996, Journal of biomechanics.

[45]  W. Ehlers Foundations of multiphasic and porous materials , 2002 .

[46]  J P Laible,et al.  A Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc , 1993, Spine.

[47]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[48]  M. Kleiber,et al.  Kinematics of deformation processes in materials subjected to finite elastic-plastic strains , 1975 .

[49]  P. Regitnig,et al.  Single lamellar mechanics of the human lumbar anulus fibrosus , 2005, Biomechanics and modeling in mechanobiology.

[50]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[51]  A Shirazi-Adl,et al.  Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. , 1999, Clinical biomechanics.

[52]  E. F. Kaasschieter,et al.  Numerical simulation of deformations and electrical potentials in a cartilage substitute. , 2003, Biorheology.

[53]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[54]  K. Ito,et al.  Direction-dependent constriction flow in a poroelastic solid: the intervertebral disc valve. , 2000, Journal of biomechanical engineering.

[55]  W M Lai,et al.  A triphasic theory for the swelling and deformation behaviors of articular cartilage. , 1991, Journal of biomechanical engineering.

[56]  Gerhard A. Holzapfel,et al.  A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications , 2001 .

[57]  Bernd Markert,et al.  A general polyconvex strain‐energy function for fiber‐reinforced materials , 2005 .

[58]  T. Lim,et al.  Poroelastic properties of bovine vertebral trabecular bone , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[59]  R. Taylor The Finite Element Method, the Basis , 2000 .

[60]  V. C. Mow,et al.  Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus , 1994, Spine.

[61]  W. Ehlers,et al.  The role of weakly imposed Dirichlet boundary conditions for numerically stable computations of swelling phenomena , 2009 .

[62]  A Shirazi-Adl,et al.  Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined with Compression , 1986, Spine.

[63]  S. Klisch,et al.  Application of a fiber-reinforced continuum theory to multiple deformations of the annulus fibrosus. , 1999, Journal of biomechanics.

[64]  E. F. Kaasschieter,et al.  Mixed finite element modelling of cartilaginous tissues , 2003, Math. Comput. Simul..

[65]  M. Jayson,et al.  The Lumbar Spine and Back Pain , 1993 .

[66]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[67]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[68]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[69]  Wilson C. Hayes,et al.  Basic Orthopaedic Biomechanics , 1995 .

[70]  Martin Schanz,et al.  A comparative study of Biot's theory and the linear Theory of Porous Media for wave propagation problems , 2003 .

[71]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[72]  W C Hayes,et al.  Flow-independent viscoelastic properties of articular cartilage matrix. , 1978, Journal of biomechanics.

[73]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[74]  L. Setton,et al.  A linear material model for fiber-induced anisotropy of the anulus fibrosus. , 2000, Journal of biomechanical engineering.

[75]  A. Spencer,et al.  The Formulation of Constitutive Equation for Anisotropic Solids , 1982 .

[76]  Van C. Mow,et al.  Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc , 1996, Spine.

[77]  A.J.M. Spencer,et al.  Constitutive Theory for Strongly Anisotropic Solids , 1984 .

[78]  P. Newman The Intervertebral Disc , 1971 .

[79]  A. W. Bishop,et al.  The Principle of Effective Stress , 1959 .

[80]  A. Spencer,et al.  Deformations of fibre-reinforced materials, , 1972 .

[81]  Wolfgang Ehlers,et al.  Constitutive Equations for Granular Materials in Geomechanical Context , 1993 .

[82]  S. Holm,et al.  Variations in the Nutrition of the Canine Intervertebral Disc Induced by Motion , 1983, Spine.

[83]  R. Ogden,et al.  Mechanics of biological tissue , 2006 .

[84]  William G. Gray,et al.  High velocity flow in porous media , 1987 .

[85]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[86]  Bernd Markert,et al.  A Coupled FE Analysis of the Intervertebral Disc Based on a Multiphasic TPM Formulation , 2006 .

[87]  J M Huyghe,et al.  A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues. , 2005, Journal of biomechanical engineering.

[88]  E. Wilson,et al.  FINITE-ELEMENT ANALYSIS OF SEEPAGE IN ELASTIC MEDIA , 1969 .

[89]  Stefan Hartmann,et al.  Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.

[90]  H. Raspe,et al.  Back pain, a communicable disease? , 2008 .

[91]  W. Ehlers Toward finite theories of liquid-saturated elasto-plastic porous media , 1991 .

[92]  Walter Noll,et al.  A mathematical theory of the mechanical behavior of continuous media , 1958 .

[93]  R. M. Bowen,et al.  Incompressible porous media models by use of the theory of mixtures , 1980 .

[94]  Vijay K. Goel,et al.  Impact Response of the Intervertebral Disc in a Finite-Element Model , 2000, Spine.

[95]  W. Ehlers,et al.  A porous media model describing the inhomogeneous behaviour of the human intervertebral disc , 2006 .

[96]  Louis Y. Cheng,et al.  Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. , 2005, Journal of biomechanical engineering.

[97]  Frank P T Baaijens,et al.  Are disc pressure, stress, and osmolarity affected by intra‐ and extrafibrillar fluid exchange? , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[98]  V C Mow,et al.  The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. , 1999, Spine.

[99]  W M Lai,et al.  Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study. , 1989, Journal of biomechanics.

[100]  J. M. Huyghe,et al.  An ionised/non-ionised dual porosity model of intervertebral disc tissue , 2003, Biomechanics and modeling in mechanobiology.

[101]  R. M. Bowen Part I – Theory of Mixtures , 1976 .