Some Monte Carlo methods for jump diffusions

In this thesis we develop computationally efficient methods to simulate finite dimensional representations of (jump) diffusion and (jump) diffusion bridge sample paths over finite intervals, without discretisation error (exactly), in such a way that the sample path can be restored at any desired finite collection of time points. Furthermore, we extend methodology for particle filters to the setting in which the transition density of the latent process is governed by a jump diffusion. Finally, we present methodology which allows the simulation of upper and lower bounding processes which almost surely constrain (jump) diffusion and (jump) diffusion bridge sample paths to any specified tolerance. We demonstrate the efficacy of our approach by showing that with finite computation it is possible to determine whether or not sample paths cross various irregular barriers, simulate to any specified tolerance the first hitting time of the irregular barrier, and simulate killed diffusion sample paths.

[1]  H. Kahn,et al.  STOCHASTIC (MONTE CARLO) ATTENUATION ANALYSIS , 1949 .

[2]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[3]  J. Hammersley,et al.  Poor Man's Monte Carlo , 1954 .

[4]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[5]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[6]  T. W. Anderson A MODIFICATION OF THE SEQUENTIAL PROBABILITY RATIO TEST TO REDUCE THE SAMPLE SIZE , 1960 .

[7]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[8]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[9]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[10]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[11]  Hiromitsu Kumamoto,et al.  Random sampling approach to state estimation in switching environments , 1977, Autom..

[12]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[13]  G. Mil’shtein A Method of Second-Order Accuracy Integration of Stochastic Differential Equations , 1979 .

[14]  L. Devroye Generating the maximum of independent identically distributed random variables , 1980 .

[15]  Nozer D. Singpurwalla,et al.  Understanding the Kalman Filter , 1983 .

[16]  B. Øksendal Stochastic Differential Equations , 1985 .

[17]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[18]  D. Florens-zmirou,et al.  Estimation of the coefficients of a diffusion from discrete observations , 1986 .

[19]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[20]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[21]  J. Geweke,et al.  BAYESIAN INFERENCE IN ECONOMETRIC MODELS USING , 1989 .

[22]  E. Hannan,et al.  The Statistical Theory of Linear Systems. , 1990 .

[23]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[24]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[25]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[26]  Hisashi Tanizaki,et al.  Prediction, filtering and smoothing in non-linear and non-normal cases using Monte Carlo integration , 1994 .

[27]  Peter W. Glynn,et al.  Discretization Error in Simulation of One-Dimensional Reflecting Brownian Motion , 1995 .

[28]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[29]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[30]  T. Higuchi Monte carlo filter using the genetic algorithm operators , 1997 .

[31]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[32]  Liqun Wang,et al.  Boundary crossing probability for Brownian motion and general boundaries , 1997, Journal of Applied Probability.

[33]  Tohru Ozaki,et al.  Comparative study of estimation methods for continuous time stochastic processes , 1997 .

[34]  Geir Hovland,et al.  Hidden Markov Models as a Process Monitor in Robotic Assembly , 1998, Int. J. Robotics Res..

[35]  Tohru Ozaki,et al.  A statistical method of estimation and simulation for systems of stochastic differential equations , 1998 .

[36]  Ola Elerian,et al.  A note on the existence of a closed form conditional transition density for the Milstein scheme , 1998 .

[37]  Isao Shoji Approximation of continuous time stochastic processes by a local linearization method , 1998, Math. Comput..

[38]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[39]  Michael V. Tretyakov,et al.  SIMULATION OF A SPACE-TIME BOUNDED DIFFUSION , 1999 .

[40]  P. Vidoni Exponential family state space models based on a conjugate latent process , 1999 .

[41]  Hong Huang Stochastic modelling and control of pension plans , 2000 .

[42]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[43]  Arnaud Doucet,et al.  Sequential Monte Carlo Methods to Train Neural Network Models , 2000, Neural Computation.

[44]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[45]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[46]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[47]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[48]  Michael K. Pitt,et al.  Auxiliary Variable Based Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[49]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[50]  Liqun Wang,et al.  Boundary crossing probability for Brownian motion , 2001, Journal of Applied Probability.

[51]  Yacine Aït-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2008 .

[52]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[53]  João Nicolau,et al.  A new technique for simulating the likelihood of stochastic differential equations , 2002 .

[54]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[55]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[56]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[57]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[58]  Neil Shephard,et al.  Multipower Variation and Stochastic Volatility , 2004 .

[59]  G. Roberts,et al.  Exact simulation of diffusions , 2005, math/0602523.

[60]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[61]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[62]  G. Roberts,et al.  Retrospective exact simulation of diffusion sample paths with applications , 2006 .

[63]  Darren J. Wilkinson,et al.  Bayesian sequential inference for nonlinear multivariate diffusions , 2006, Stat. Comput..

[64]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[65]  Xuerong Mao,et al.  Stochastic Differential Equations With Markovian Switching , 2006 .

[66]  P. Fearnhead,et al.  Particle filters for partially observed diffusions , 2007, 0710.4245.

[67]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[68]  S. Iacus SDE : simulation and inference for stochastic differential equations , 2008 .

[69]  A. Doucet,et al.  A note on auxiliary particle filters , 2008 .

[70]  Darren J. Wilkinson,et al.  Bayesian inference for nonlinear multivariate diffusion models observed with error , 2008, Comput. Stat. Data Anal..

[71]  Agnès Lagnoux-Renaudie A Two-Step Branching Splitting Model Under Cost Constraint for Rare Event Analysis , 2009, Journal of Applied Probability.

[72]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[73]  Nicola Bruti-Liberati,et al.  Stochastic Differential Equations with Jumps , 2010 .

[74]  Umberto Picchini,et al.  Stochastic Differential Mixed‐Effects Models , 2010 .

[75]  P. Fearnhead,et al.  Random‐weight particle filtering of continuous time processes , 2010 .

[76]  Jean Jacod,et al.  Discretization of Processes , 2011 .

[77]  Gareth O. Roberts,et al.  Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications , 2011 .

[78]  Kay Giesecke,et al.  Exact Sampling of Jump-Diffusions , 2013 .

[79]  Gareth O. Roberts,et al.  Exact Simulation Problems for Jump-Diffusions , 2014 .

[80]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[81]  Eugen Slutsuky,et al.  Über stochastische Asymptoten und Grenzwerte (Abdruck) , 2022 .