A pointwise differential inequality and second-order regularity for nonlinear elliptic systems

A sharp pointwise differential inequality for vectorial second-order partial differential operators, with Uhlenbeck structure, is offered. As a consequence, optimal second-order regularity properties of solutions to nonlinear elliptic systems in domains in $${\mathbb R^n}$$ are derived. Both local and global estimates are established. Minimal assumptions on the boundary of the domain are required for the latter. In the special case of the p-Laplace system, our conclusions broaden the range of the admissible values of the exponent p previously known.

[1]  V. Burenkov Sobolev spaces on domains , 1998 .

[2]  S. Müller,et al.  Non-linear elliptic systems with measure-valued right hand side , 1997 .

[3]  Higher order Calderón-Zygmund estimates for the p-Laplace equation , 2019, 1904.03388.

[4]  V. Maz'ya,et al.  Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems , 2017, 1703.07446.

[5]  V. Maz'ya,et al.  Gradient regularity via rearrangements for $p$-Laplacian type elliptic boundary value problems , 2014 .

[6]  M. Bulíček,et al.  A boundary regularity result for minimizers of variational integrals with nonstandard growth , 2018, Nonlinear Analysis.

[7]  Anna Kh. Balci,et al.  Elliptic Equations with Degenerate Weights , 2020, SIAM J. Math. Anal..

[8]  G. Mingione,et al.  Lipschitz Bounds and Nonuniform Ellipticity , 2019, Communications on Pure and Applied Mathematics.

[9]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[10]  Jan Kristensen,et al.  Regularity of minimizers of autonomous convex variational integrals , 2013, 1310.4435.

[11]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[12]  A. Cianchi,et al.  Fully anisotropic elliptic problems with minimally integrable data , 2019, Calculus of Variations and Partial Differential Equations.

[13]  A. Cellina The regularity of solutions to some variational problems, including the p-Laplace equation for 2 ≤ p< 3 , 2017 .

[14]  A. Cianchi Local boundedness of minimizers of anisotropic functionals , 2000 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  iuseppe,et al.  Linear potentials in nonlinear potential theory , 2012 .

[17]  Alain Bensoussan,et al.  Regularity Results for Nonlinear Elliptic Systems and Applications , 2002 .

[18]  G. Mingione Gradient estimates below the duality exponent , 2010 .

[19]  Cianchi Andrea Boundedness of solutions to variational problems under general growth conditions , 1997 .

[20]  D. Breit,et al.  Global Schauder estimates for the $p$-Laplace system , 2019, 1903.12496.

[21]  H. B. Veiga,et al.  On the global W2,q regularity for nonlinear N-systems of the p-Laplacian type in n space variables , 2012, 1201.2604.

[22]  V. Maz'ya,et al.  Optimal second-order regularity for the p-Laplace system , 2018, Journal de Mathématiques Pures et Appliquées.

[23]  P. Hästö,et al.  Hölder regularity of quasiminimizers under generalized growth conditions , 2017 .

[24]  Lars Diening,et al.  Fractional estimates for non-differentiable elliptic systems with general growth , 2008 .

[25]  N. Fusco,et al.  Regularity for Minimizers of Non-quadratic Functionals: The Case 1 , 1989 .

[26]  Pilsoo Shin,et al.  Fractional differentiability results for nonlinear measure data problems with coefficients in Cγα , 2021 .

[27]  M. Mi'skiewicz Fractional differentiability for solutions of the inhomogenous $p$-Laplace system , 2017, 1708.00900.

[28]  G. Talenti Boundedness of minimizers , 1990 .

[29]  Lucio Damascelli,et al.  Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations , 2004 .

[30]  B. Stroffolini,et al.  Everywhere regularity of functionals with φ-growth , 2009 .

[31]  P. Gwiazda,et al.  Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space , 2017, 1701.08970.

[32]  Ya-Zhe Chen,et al.  Boundary estimates for solutions of nonlinear degenerate parabolic systems. , 1989 .

[33]  Lars Diening,et al.  A Relaxed Kačanov iteration for the p-poisson problem , 2020, Numerische Mathematik.

[34]  A. Cianchi,et al.  A sharp embedding theorem for Orlicz-Sobolev spaces , 1996 .

[35]  V. Maz'ya,et al.  Global Boundedness of the Gradient for a Class of Nonlinear Elliptic Systems , 2012, 1212.5773.

[36]  S. Bernstein,et al.  Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre , 1904 .

[37]  V. Mizel,et al.  Absolute continuity on tracks and mappings of Sobolev spaces , 1972 .

[38]  G. Talenti Nonlinear elliptic equations, rearrangements of functions and orlicz spaces , 1979 .

[39]  Karen K. Uhlenbeck Regularity for a class of non-linear elliptic systems , 1977 .

[40]  V. Maz'ya,et al.  Quasilinear elliptic problems with general growth and merely integrable, or measure, data , 2017, 1708.07432.

[41]  Paolo Marcellini,et al.  A-priori gradient bound for elliptic systems under either slow or fast growth conditions , 2019, Calculus of Variations and Partial Differential Equations.

[42]  L. Diening,et al.  BMO estimates for the p-Laplacian , 2012 .

[43]  A. Cellina The regularity of solutions to some variational problems, including the p -Laplace equation for 3≤ p < 4 , 2018 .

[44]  T. Kuusi,et al.  Nonlinear Calderón–Zygmund Theory in the Limiting Case , 2018 .

[45]  T. Kuusi,et al.  Vectorial nonlinear potential theory , 2018 .

[46]  Regularity , 2001, Peirce's Pragmatism.

[47]  C. R. Grisanti,et al.  On the high regularity of solutions to the $$p$$p-Laplacian boundary value problem in exterior domains , 2016 .

[48]  Paolo Marcellini Regularity for Elliptic Equations with General Growth Conditions , 1993 .

[49]  Hongwei Lou,et al.  On singular sets of local solutions to p-Laplace equations , 2008 .

[50]  Michael Taylor Nonlinear Elliptic Equations , 2011 .

[51]  P. Baroni Riesz potential estimates for a general class of quasilinear equations , 2015 .

[52]  I. Chlebicka,et al.  A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces , 2018, Nonlinear Analysis.

[53]  T. Kuusi,et al.  Pointwise Calderón–Zygmund gradient estimates for the p -Laplace system , 2015, Journal de Mathématiques Pures et Appliquées.