Review: Low transformation temperature weld filler for tensile residual stress reduction

An attractive, alternative approach for the reduction of harmful residual stresses in weld zones is reviewed, which utilises low temperature, solid-state, displacive phase transformations in steel. The theory, latest concepts and practice for the design of such low transformation temperature (LTT) filler alloys are considered. By engineering the phase transformation temperature of the weld metal so as to take advantage of transformation expansion, the residual stress state within the weld zone can be significantly altered, most particularly where the weld thermally contracts with any movement of base parts constrained. To date, the technique has been shown to increase fatigue strength for some common weld geometries, which may enable engineering design codes to be favourably re-drafted where such LTT filler alloys are used.

[1]  Seung Jin Oh,et al.  Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds , 2010 .

[2]  T. F. Volynova,et al.  Brittleness of α, ε, and γ solid solutions of Fe-Mn alloys , 1979 .

[3]  G. Farrahi,et al.  The effect of shot peening on fatigue life of welded tubular joint in offshore structure , 2012 .

[4]  T Dahle,et al.  Design fatigue strength of TIG-dressed welded joints in high-strength steels subjected to spectrum loading , 1998 .

[5]  Lixing Huo Yufeng Zhang Dongpo Wang Hongyang Jing Wenxian Wang New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints , 2009 .

[6]  Shuichi Nakamura,et al.  Effect of Oxygen Content on Toughness in High Strength Weld Metal , 2010 .

[7]  Lixing Huo,et al.  Investigation of the fatigue behaviour of the welded joints treated by TIG dressing and ultrasonic peening under variable-amplitude load , 2005 .

[8]  A. Kromm,et al.  Determination of Residual Stresses in Low Transformation Temperature (LTT -) Weld Metals using X-ray and High Energy Synchrotron Radiation , 2009 .

[9]  A. Ohta,et al.  Superior fatigue crack growth properties in newly developed weld metal , 1999 .

[10]  Thomas Sourmail,et al.  Critical assessment of models for predicting the Ms temperature of steels , 2005 .

[11]  A. Kromm,et al.  Characterizing PHASE TRANSFORMATIONS of different LTT alloys and their effect on RESIDUAL STRESSES and COLD CRACKING , 2011 .

[12]  A. P. Gulyaev,et al.  A Comparison Of The Visual Effects Of Two Transform Domain Encoding Approaches , 1979 .

[13]  W. Wenxian,et al.  Ultrasonic Peening and Low Transformation Temperature Electrodes used for Improving the Fatigue Strength of Welded Joints , 2004 .

[14]  H. Bhadeshia,et al.  Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables , 2010 .

[15]  H. Bhadeshia,et al.  Some phase transformations in steels , 1999 .

[16]  H. Bhadeshia,et al.  The Effects of Filler Metal Transformation Temperature on Residual Stresses in a High Strength Steel Weld , 2009 .

[17]  Jian Lu,et al.  Handbook of Measurement of Residual Stresses , 1995 .

[18]  W. Blows,et al.  Temperature. , 2018, Nursing times.

[19]  S. J. Maddox,et al.  Fatigue strength of welded structures , 1991 .

[20]  H. Bhadeshia,et al.  Transformation Temperatures and Welding Residual Stresses in Ferritic Steels , 2007 .

[21]  C. Capdevila,et al.  Analysis of effect of alloying elements on martensite start temperature of steels , 2003 .

[22]  Horst-Hannes Cerjak,et al.  Mathematical Modelling of Weld Phenomena 7 , 2004 .

[23]  Young Hoon Moon,et al.  Investigation of residual stress and post weld heat treatment of multi-pass welds by finite element method and experiments , 2004 .

[24]  K. Anami,et al.  Improving Fatigue Strength by Additional Welding with Low Temperature Transformation Welding Electrodes , 2001 .

[25]  K. Hiraoka,et al.  Analysis of Martensite Transformation Behavior in Welded Joint of Low Transformation-Temperature Materials , 2007 .

[26]  H. Bhadeshia,et al.  Stainless steel weld metal designed to mitigate residual stresses , 2009 .

[27]  Gregory B Olson,et al.  Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation , 1994 .

[28]  K. Nikbin,et al.  Effect of low transformation temperature weld filler metal on welding residual stress , 2010 .

[29]  T. Shimoyama,et al.  Welding of Maraging Steels , 1967 .

[30]  H. Bhadeshia,et al.  Design of weld fillers for mitigation of residual stresses in ferritic and austenitic steel welds , 2011 .

[31]  J. Bolton,et al.  The mechanical properties of α-phase low-carbon Fe-Mn alloys , 1971 .

[32]  P. F. Morris,et al.  Prediction of martensite start temperature using artificial neural networks , 1996 .

[33]  O. Watanabe,et al.  Fatigue Strength Improvement of Box Welded Joints by Using Low Transformation Temperature Welding Material. , 2000 .

[34]  H. Bhadeshia,et al.  Characterizing Phase Transformations and Their Effects on Ferritic Weld Residual Stresses with X-Rays and Neutrons , 2008 .

[35]  H. Bhadeshia Phase transformations contributing to the properties of modern steels , 2010 .

[36]  T. Siewert,et al.  Cruciform fillet welded joint fatigue strength improvements by weld metal phase transformations , 2008 .

[37]  Shuvra Das,et al.  Residual Stress and Distortion , 2003 .

[38]  K. Hiraoka,et al.  Development of new low transformation temperature welding consumable to prevent cold cracking in high strength steel welds , 2007 .

[39]  L. Karlsson,et al.  Development of matching composition supermartensitic stainless steel welding consumables , 1999 .

[40]  Marc Thomas,et al.  Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method , 2010 .

[41]  K. Hiraoka,et al.  Atmospheric Corrosion Behavior of High Strength Steel Weld Joints Formed by Low Transformation-Temperature Welding Consumables , 2006 .

[42]  R. Farrar,et al.  Columnar grain development in C-Mn-Ni low-alloy weld metals and the influence of nickel , 1995, Journal of Materials Science.

[43]  Kunihiko Satoh,et al.  Thermal Stresses Developed In High-strength Steels Subjected To Thermal Cycles Simulating Weld Heat-affected Zone , 1966 .

[44]  E. A. Wilson,et al.  The nature of intergranular embrittlement in quenched FeMn alloys , 1978 .

[45]  V. Balasubramanian,et al.  Assessment of some factors influencing the fatigue life of strength mis-matched HSLA steel weldments , 2004 .

[46]  H. Bhadeshia,et al.  Changes in toughness at low oxygen concentrations in steel weld metals , 2006 .

[47]  Naoyuki Suzuki,et al.  Unique fatigue threshold and growth properties of welded joints in a tensile residual stress field , 1997 .

[48]  J. Jorge,et al.  Microstructural analysis of a single pass 2.25% Cr–1.0% Mo steel weld metal with different manganese contents , 2005 .

[49]  O. Watanabe,et al.  Fatigue strength improvement of box welds using low transformation temperature welding material. Tripled fatigue strength by post weld heat treatment , 2002 .

[50]  Michel Rappaz,et al.  Modeling of casting, welding and advanced solidification processes-V : proceedings of the fifth International Conference on Modeling of Casting and Welding Processes, held in Davos Switzerland, September 16-21, 1990 , 1991 .

[51]  G. Totten,et al.  Handbook of Residual Stress and Deformation of Steel , 2001 .

[52]  R. Honeycombe Steels, Microstructure and Properties , 1982 .

[53]  Massoud Malaki,et al.  Strength enhancement of the welded structures by ultrasonic peening , 2012 .

[54]  Arne Kromm,et al.  In Situ Observation of Phase Transformations during Welding of Low Transformation Temperature Filler Material , 2010 .

[55]  H. K. D. H. Bhadeshia,et al.  Prediction of martensite start temperature of power plant steels , 1996 .

[56]  A. Ohta,et al.  Fatigue Strength Improvement of Lap Welded Joints by Low Transformation Temperature Welding Wire — Superior Improvement with Strength of Steel , 2003 .

[57]  Zuheir Barsoum,et al.  Spectrum fatigue of high strength steel joints welded with low temperature transformation consumables , 2009 .

[58]  S. Kundu Transformation strain and crystallographic texture in steels , 2007 .

[59]  K. Yao,et al.  Study of the effects of stress and strain on martensite transformation: Kinetics and transformation plasticity* , 2000 .

[60]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[61]  P. F. Parasyuk Structure and properties of iron-manganese alloys , 1975 .

[62]  Wenxian Wang INVESTIGATION ON PHASE STRESS AND ITS APPLICATION TO IMPROVING FATIGUE STRENGTH OF WELDED JOINTS , 2002 .

[63]  S. Zwaag,et al.  Determination of Martensite Start Temperature in Engineering Steels Part I. Empirical Relations Describing the Effect of Steel Chemistry , 2000 .

[64]  A. Combescure,et al.  Numerical simulation of welding induced damage and residual stress of martensitic steel 15-5PH , 2008 .

[65]  L. Karlsson,et al.  Fatigue properties of longitudinal attachments welded using low transformation temperature filler , 2003 .

[66]  Ying Zhang,et al.  Cross-sectional mapping of residual stresses in a VPPA weld using the contour method , 2004 .

[67]  M. Mochizuki,et al.  Analysis of martensite transformation behaviour in welded joint using low transformation temperature welding wire , 2010 .

[68]  H. K. D. H. Bhadeshia,et al.  Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 2 – Impact toughness gain resulting from manganese reductions , 2006 .

[69]  H. K. D. H. Bhadeshia,et al.  Developments in martensitic and bainitic steels: role of the shape deformation , 2004 .

[70]  Masahito Mochizuki,et al.  Angular distortion of fillet welded T joint using low transformation temperature welding wire , 2009 .

[71]  Stephen J Maddox,et al.  Fatigue design rules for welded structures , 2000 .

[72]  L. Svensson,et al.  Increasing fatigue life using Low Transformation Temperature (LTT) welding consumables , 2013 .

[73]  A. Ohta,et al.  Repair of fatigue cracks initiated around box welds using low transformation temperature welding material , 2004 .

[74]  Stephen Liu,et al.  Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds , 2008 .

[75]  K. Hiraoka,et al.  Analysis of martensite transformation behaviour in welded joints of low transformation-temperature materials , 2009 .

[76]  Gregory B Olson,et al.  Kinetics of F.c.c. → b.c.c. heterogeneous martensitic nucleation-II. Thermal activation , 1994 .

[77]  G. Sarkar,et al.  Development and comparison of residual stress measurement on welds by various methods , 2004 .

[78]  Marc Thomas,et al.  Residual stress and microstructure in welds of 13%Cr-4%Ni martensitic stainless steel , 2009 .