Application of penalty-equilibrium hybrid stress element method to crack problems

Abstract Based on a penalty Hellinger–Reissner principle, two special hybrid stress elements ensuring traction-free conditions along arbitrary boundaries are introduced to improve the penalty-equilibrium hybrid stress element method (PEHS). In the element formulation, the stresses are approximated by complete polynomials of global co-ordinates. The path independence of J 1 - and I ∗ 1 -integrals is examined. These integrals are then used for the determination of the stress intensity factor (SIF) at the tip of a crack in mode I or II in a linear isotropic or orthotropic material. Studies on the validity of the dual analysis concept for both materials are also carried out. Confirmative numerical results for typical cracked specimens are presented and discussed.

[1]  B. Fraeijs de Veubeke,et al.  Matrix methods of structural analysis , 1964 .

[2]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[3]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[4]  O. C. Holister,et al.  Stress Analysis , 1965 .

[5]  E. Dill,et al.  Theory of Elasticity of an Anisotropic Elastic Body , 1964 .

[6]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[7]  C. E. Freese,et al.  Central crack in plane orthotropic rectangular sheet , 1972 .

[8]  G. Sih,et al.  Mathematical theories of brittle fracture. , 1968 .

[9]  H. T. Corten,et al.  FRACTURE MECHANICS OF COMPOSITES , 1972 .

[10]  Genki Yagawa,et al.  Dual analysis for path integrals and bounds for crack parameter , 1998 .

[11]  J. P. Moitinho de Almeida,et al.  Alternative approach to the formulation of hybrid equilibrium finite elements , 1991 .

[12]  Baudouin Fraeijs de Veubeke,et al.  Upper and lower bounds in matrix structural analysis , 1963 .

[13]  Theodore H. H. Pian,et al.  STUDIES OF STRESS CONCENTRATION BY USING SPECIAL HYBRID STRESS ELEMENTS , 1997 .

[14]  Genki Yagawa,et al.  Finite element methodology for path integrals in fracture mechanics , 1998 .

[15]  Bhushan Lal Karihaloo,et al.  An improved hybrid-stress element approach to torsion of shafts , 1999 .

[16]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[17]  David R. Owen,et al.  FINITE ELEMENT PROGRAMMING , 1980, The Finite Element Method Using MATLAB.

[18]  R. H. Gallagher Can and Should The Force Method be Revisited , 1995 .

[19]  D. Rooke,et al.  The compendium of stress intensity factors , 1978, International Journal of Fracture.

[20]  Chang-Chun Wu,et al.  On optimization approaches of hybrid stress elements , 1995 .

[21]  Yiu-Wing Mai,et al.  Advances in Fracture Research , 1997 .

[22]  Harold Liebowitz,et al.  Finite Element Methods in Fracture Mechanics , 1987 .

[23]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[24]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[25]  J. E. Akin,et al.  Finite Element Analysis for Undergraduates , 1987 .

[26]  E. A. W. Maunder,et al.  A GENERAL FORMULATION OF EQUILIBRIUM MACRO-ELEMENTS WITH CONTROL OF SPURIOUS KINEMATIC MODES : THE EXORCISM OF AN OLD CURSE , 1996 .

[27]  J. P. Moitinho de Almeida,et al.  A SET OF HYBRID EQUILIBRIUM FINITE ELEMENT MODELS FOR THE ANALYSIS OF THREE-DIMENSIONAL SOLIDS , 1996 .

[28]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .

[29]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[30]  T. Pian,et al.  A rational approach for choosing stress terms for hybrid finite element formulations , 1988 .

[31]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[32]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[33]  Chang-Chun Wu,et al.  FRACTURE ESTIMATION: BOUND THEOREM AND NUMERICAL STRATEGY , 1999 .