Self-gravitating electrically charged anisotropic strange star model
暂无分享,去创建一个
[1] K. Singh,et al. Self-gravitating anisotropic compact objects in 5D EGB gravity , 2022, The European Physical Journal Plus.
[2] A. Abdel‐Aty,et al. Self-gravitating anisotropic model in general relativity under modified Van der Waals equation of state: a stable configuration , 2022, The European Physical Journal C.
[3] Y. Khedif,et al. Anisotropic stars of class one space–time in f(R,T) gravity under the simplest linear functional of the matter-geometry coupling , 2022, Chinese Journal of Physics.
[4] Y. Khedif,et al. Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach , 2021, Chinese Physics C.
[5] K. Singh,et al. Anisotropic stars via embedding approach in Brans–Dicke gravity , 2021, The European Physical Journal C.
[6] A. Banerjee,et al. Anisotropic quark stars in Einstein-Gauss-Bonnet theory , 2021 .
[7] M. Daoud,et al. A new well-behaved class of compact strange astrophysical model consistent with observational data , 2021, The European Physical Journal C.
[8] A. Banerjee,et al. Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations , 2021, Annals of Physics.
[9] Y. Khedif,et al. Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.
[10] M. Zubair,et al. A Generic Embedding Class-I Model via Karmarkar Condition in f ℛ , T Gravity , 2021 .
[11] A. Usman,et al. Charged anisotropic Finch–Skea–Bardeen spheres in f(R) gravity with Karmarkar condition , 2021 .
[12] M. K. Jasim,et al. Charged strange stellar model describing by Tolman V metric , 2020, Results in Physics.
[13] M. Daoud,et al. Gravitational decoupling minimal geometric deformation model in modified f(R,T) gravity theory , 2020 .
[14] M. Zubair,et al. Interior solutions of compact stars in f(T,T) gravity under Karmarkar condition , 2020 .
[15] M. Shamir. Massive compact Bardeen stars with conformal motion , 2020, Physics Letters B.
[16] Muhammad Zubair,et al. Physically Acceptable Embedded Class-I Compact Stars in Modified Gravity with Karmarkar Condition , 2020, Symmetry.
[17] M. Daoud,et al. Studies an analytic model of a spherically symmetric compact object in Einsteinian gravity , 2020, The European Physical Journal C.
[18] S. Ray,et al. Anisotropic strange star with Tolman–Kuchowicz metric under f(R, T) gravity , 2020, The European Physical Journal C.
[19] T. Xia,et al. Realistic stellar anisotropic model satisfying Karmarker condition in f(R, T) gravity , 2020, The European Physical Journal C.
[20] E. Sayouty,et al. A spherically symmetric model of anisotropic fluid for strange quark spheres , 2019, The European Physical Journal C.
[21] S. Ray,et al. Exploring physical features of anisotropic strange stars beyond standard maximum mass limit in $f\left(R,\mathcal {T}\right)$ gravity , 2018, Monthly Notices of the Royal Astronomical Society.
[22] M. Sharif,et al. Study of charged spherical collapse in $f(\mathcal{G},T)$f(𝒢,T) gravity , 2018, The European Physical Journal Plus.
[23] Y. K. Gupta,et al. Spherically symmetric charged compact stars , 2015 .
[24] M. H. Murad. Some analytical models of anisotropic strange stars , 2015 .
[25] L. Herrera,et al. Conformally flat polytropes for anisotropic matter , 2014, 1410.6636.
[26] B. C. Paul,et al. Relativistic solutions of anisotropic compact objects , 2014, 1603.07694.
[27] S. Ulhoa. On the Quasinormal Modes for Gravitational Perturbations of the Bardeen Black Hole , 2013, 1303.3143.
[28] M. Sharif,et al. Effects of electromagnetic field on shearfree spherical collapse , 2013 .
[29] S. Capozziello,et al. Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology , 2012, 1206.4842.
[30] S. Ray,et al. Strange stars in Krori–Barua space-time , 2011, 1108.6125.
[31] J. Cordes,et al. On the nature and evolution of the unique binary pulsar J1903+0327 , 2010, 1011.5809.
[32] Sergei D. Odintsov,et al. Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.
[33] L. Herrera,et al. Dynamical instability and the expansion-free condition , 2010, 1010.1518.
[34] C. Boehmer,et al. Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.
[35] P. Ellis,et al. Isospin asymmetry in nuclei and neutron stars , 2004, nucl-th/0410066.
[36] J. Lattimer,et al. The Physics of Neutron Stars , 2004, Science.
[37] T. Harko,et al. Maximum mass-radius ratios for charged compact general relativistic objects , 2001, gr-qc/0107011.
[38] A. Treves,et al. Vacuum Breakdown near a Black Hole Charged by Hypercritical Accretion , 1998, astro-ph/9812383.
[39] L. Herrera,et al. Negative energy density and classical electron models , 1994 .
[40] M. C. Durgapal. A class of new exact solutions in general relativity , 1982 .
[41] G. Junevicus. An analysis of the Krori-Barua solution , 1976 .
[42] K. Krori,et al. A singularity-free solution for a charged fluid sphere in general relativity , 1975 .
[43] W. Bonnor,et al. Are Very Large Gravitational Redshifts Possible , 1975 .
[44] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[45] D. Kramer,et al. Innere Reissner‐Weyl‐Lösung , 1971 .
[46] S. J. Wilson. Exact solution of a static charged sphere in general relativity , 1969 .
[47] W. Bonnor. The Equilibrium of a Charged Sphere , 1965 .
[48] W. Bonnor. The mass of a static charged sphere , 1960 .
[49] C. Moller. On the localization of the energy of a physical system in the general theory of relativity , 1958 .
[50] F. Zwicky,et al. On Super-Novae , 1934, Proceedings of the National Academy of Sciences.
[51] J. CHADWICK,et al. Possible Existence of a Neutron , 1932, Nature.