Energy-weighted M1 sum rule with explicit δ degrees of freedom

[1]  M. Traini,et al.  Tensor correlation effects in the energy weighted sum rule for nuclear spin-flip excitation operators , 1984 .

[2]  W. Weaise Role of the Δ(1232) in nuclear isovector-spin transitions☆ , 1983 .

[3]  A. Richter Inelastic electron scattering at low energy: Magnetic transitions and the magnetic polarizability of nuclei , 1982 .

[4]  E. Sugarbaker,et al.  Excitation of giant spin-isospin multipole vibrations , 1981 .

[5]  H. Arenhövel,et al.  The TRK-sum rule in 4He including isobar effects , 1978 .

[6]  H. Weber,et al.  Isobar configurations in nuclei , 1978 .

[7]  A. Green Nucleon resonance in nuclei , 1976 .

[8]  S. Stringari,et al.  M1 strength distribution in nuclei , 1976 .

[9]  E. Pietarinen,et al.  The ϱNN vertex in vector-dominance models , 1975 .

[10]  R. Tourreil,et al.  Super-soft-core nucleon-nucleon interaction with π-, ρ- and gw-exchange contributions , 1975 .

[11]  P. Haapakoski A nucleon-nucleon potential that includes the effect of the N∗(1236) , 1974 .

[12]  W. Weng,et al.  Electric-dipole sum rule and two-body correlations in nuclei , 1973 .

[13]  H. Weber,et al.  Nuclear isobar configurations , 1972 .

[14]  R. V. Reid Local phenomenological nucleon-nucleon potentials , 1968 .

[15]  A. Pais,et al.  SU(6) and electromagnetic interactions , 1964 .

[16]  D. Kurath STRONG M1 TRANSITIONS IN LIGHT NUCLEI , 1963 .

[17]  L. Foldy,et al.  The Phenomenological Theory of Exchange Currents in Nuclei , 1950 .