Energy-weighted M1 sum rule with explicit δ degrees of freedom
暂无分享,去创建一个
[1] M. Traini,et al. Tensor correlation effects in the energy weighted sum rule for nuclear spin-flip excitation operators , 1984 .
[2] W. Weaise. Role of the Δ(1232) in nuclear isovector-spin transitions☆ , 1983 .
[3] A. Richter. Inelastic electron scattering at low energy: Magnetic transitions and the magnetic polarizability of nuclei , 1982 .
[4] E. Sugarbaker,et al. Excitation of giant spin-isospin multipole vibrations , 1981 .
[5] H. Arenhövel,et al. The TRK-sum rule in 4He including isobar effects , 1978 .
[6] H. Weber,et al. Isobar configurations in nuclei , 1978 .
[7] A. Green. Nucleon resonance in nuclei , 1976 .
[8] S. Stringari,et al. M1 strength distribution in nuclei , 1976 .
[9] E. Pietarinen,et al. The ϱNN vertex in vector-dominance models , 1975 .
[10] R. Tourreil,et al. Super-soft-core nucleon-nucleon interaction with π-, ρ- and gw-exchange contributions , 1975 .
[11] P. Haapakoski. A nucleon-nucleon potential that includes the effect of the N∗(1236) , 1974 .
[12] W. Weng,et al. Electric-dipole sum rule and two-body correlations in nuclei , 1973 .
[13] H. Weber,et al. Nuclear isobar configurations , 1972 .
[14] R. V. Reid. Local phenomenological nucleon-nucleon potentials , 1968 .
[15] A. Pais,et al. SU(6) and electromagnetic interactions , 1964 .
[16] D. Kurath. STRONG M1 TRANSITIONS IN LIGHT NUCLEI , 1963 .
[17] L. Foldy,et al. The Phenomenological Theory of Exchange Currents in Nuclei , 1950 .