Lightweight hierarchical error control codes for multi-bit differential channels

This dissertation describes a new class of non-linear block codes called "Lightweight Hierarchical Error Control Codes (LHECC)." LHECC is designed to operate over system-level interconnects such as network-on-chip, inter-chip, and backplane interconnects. LHECC provides these interconnects with powerful error correction capability and thus effectively increases signal integrity and noise immunity. As a result, these interconnects may carry data with lower signal power and/or higher transmission rates. LHECC is designed such that support for it may be tightly integrated into high-speed, low-latency system-level I/O interfaces. Encoding and decoding may be performed at system core speeds with low chip area requirements. LHECC is optimized for a new type of high-performance system-level interconnect technology called Multi-Bit Differential Signaling (MBDS). MBDS channels require the use of a physical-layer channel code called "N choose M (nCm)" encoding, where each channel is restricted to a symbol set such that half of the bits in each symbol are 1-bits. These symbol sets have properties such as inherent error detection capability and unused symbol space. These properties are used to give MBDS-based system-level interconnects an arbitrary error correction capability with low or zero information overhead. This is achieved by hierarchical encoding, where a portion of source data is encoded into a "high-level" block code while the remainder of the data is encoded into a "low-level" code by choosing particular nCm symbols from symbol subsets specified by the high-level encoding. This thesis presents the following. First, it provides a theoretical study of LHECC and illustrates its effectiveness at achieving low-overhead error control for system-level interconnects. Second, it provides example implementations of efficient LHECC encoder and decoder architectures that are capable of operating at speeds necessary for high-performance system-level channels. Third, it describes an experimental technique to verify the effectiveness of these codes, where interconnect error behavior is captured using channel and noise models over a range of transmission rates and noise characteristics. Results obtained through simulation of these models characterize the effectiveness of LHECC. Using this method, system-level interconnects that utilize this new encoding technique are shown to have significantly higher noise immunity than those without.

[1]  Jien-Chung Lo A Hyper Optimal Encoding Scheme for Self-Checking Circuits , 1996, IEEE Trans. Computers.

[2]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[3]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[4]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[5]  Torleiv Kløve,et al.  The undetected error probability threshold of m-out-of-n codes , 2000, IEEE Trans. Inf. Theory.

[6]  Donald M. Chiarulli,et al.  Area, power, and pin efficient bus transceiver using multi-bit-differential signaling , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[7]  S. K. Leung-Yan-Cheong,et al.  Concerning a Bound on Undetected Error Probability , 1970 .

[8]  B.W. Langley,et al.  Superconducting interconnects for VLSI multi-chip system integration , 1990, Digest of Technical Papers.1990 Symposium on VLSI Technology.

[9]  R. Vounckx,et al.  A power reduction method for off-chip interconnects , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[10]  H. Melchior,et al.  Demonstration of 2-D plastic optical fibre based optical interconnect between CMOS ICs , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[11]  David A. Johns,et al.  Power efficient chip-to-chip signaling schemes , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[12]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[13]  R. Dennard,et al.  Design and characterization of a CMOS off-chip driver/receiver with reduced power-supply disturbance , 1992 .

[14]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[15]  George Varghese,et al.  Low-swing on-chip signaling techniques: effectiveness and robustness , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[16]  Y Li,et al.  Fiber-image-guide-based bit-parallel optical interconnects. , 1996, Applied optics.

[17]  B. Young An SOI CMOS LVDS driver and receiver pair , 2001, 2001 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.01CH37185).

[18]  Alister G. Burr Turbo-codes: the ultimate error control codes? , 2001 .

[19]  Paul D. Franzon,et al.  4 Gbps high-density AC coupled interconnection , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[20]  James L. Massey,et al.  Step-by-step decoding of the Bose-Chaudhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.

[21]  Yixian Yang,et al.  On the undetected error probability of nonlinear binary constant weight codes , 1994, IEEE Trans. Commun..

[22]  John Teifel,et al.  A high-speed clockless serial link transceiver , 2003, Ninth International Symposium on Asynchronous Circuits and Systems, 2003. Proceedings..

[23]  Donald M. Chiarulli,et al.  Active substrates for optoelectronic interconnect , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[24]  Mark Horowitz,et al.  High-speed electrical signaling: overview and limitations , 1998, IEEE Micro.

[25]  Donald M. Chiarulli,et al.  System-level modeling and Simulation of the 10G optoelectronic interconnect , 2003 .

[26]  F. Lemmermeyer Error-correcting Codes , 2005 .

[27]  R. Engelbrecht,et al.  DIGEST of TECHNICAL PAPERS , 1959 .

[28]  C. B. Shung,et al.  A Reed-Solomon product-code (RS-PC) decoder chip for DVD applications , 1998 .

[29]  Matthew N. O. Sadiku,et al.  Elements of Electromagnetics , 1989 .

[30]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[31]  Hanho Lee High-speed VLSI architecture for parallel Reed-Solomon decoder , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[32]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[33]  M. Horowitz,et al.  A 2.4 Gb/s/pin simultaneous bidirectional parallel link with per-pin skew compensation , 2000, IEEE Journal of Solid-State Circuits.

[34]  A. Bogliolo,et al.  Encodings for high-performance energy-efficient signaling , 2001, ISLPED'01: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No.01TH8581).

[35]  Mircea R. Stan,et al.  Low-power encodings for global communication in CMOS VLSI , 1997, IEEE Trans. Very Large Scale Integr. Syst..

[36]  Herbert O. Burton Inversionless decoding of binary BCH codes , 1971, IEEE Trans. Inf. Theory.

[37]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[38]  Donald M. Chiarulli,et al.  Area-, power-, and pin-efficient bus structures using multi-bit-differential signaling , 2005, SPIE Microtechnologies.

[39]  W. W. Peterson,et al.  Encoding and error-correction procedures for the Bose-Chaudhuri codes , 1960, IRE Trans. Inf. Theory.

[40]  Elwyn R. Berlekamp,et al.  On decoding binary Bose-Chadhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.

[41]  Cheng-Wen Wu,et al.  Low-Cost Modular Totally Self-Checking Checker Design for m-out-of-n Code , 1999, IEEE Trans. Computers.

[42]  Ron M. Roth,et al.  Location-correcting codes , 1996, IEEE Trans. Inf. Theory.

[43]  John Poulton Problems and prospects for electrical signaling [VLSI] , 1999, Proceedings 20th Anniversary Conference on Advanced Research in VLSI.

[44]  Nicholas Cravotta RapidIOversus HyperTransport : A battle between equals or unintentional marketing confusion ? , 2002 .

[46]  M W Haney,et al.  Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors. , 1999, Applied optics.

[47]  Xia Fang,et al.  A new VLSI design for decoding of Reed-Solomon codes based on ASIP [HDTV] , 2001, ASICON 2001. 2001 4th International Conference on ASIC Proceedings (Cat. No.01TH8549).

[48]  D V Plant,et al.  Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide. , 2000, Applied optics.

[49]  Ted H. Szymanski Optical link optimization using embedded forward error correcting codes , 2003 .

[50]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[51]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[52]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[53]  H. Tamura,et al.  PRD-based global-mean-time signaling for high-speed chip-to-chip communications , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[54]  Stefan Hirsch,et al.  CMOS receiver circuits for high-speed data transmission according to LVDS-standard , 2003, SPIE Microtechnologies.

[55]  S C Esener,et al.  Free-space parallel multichip interconnection system. , 2000, Applied optics.

[56]  Tenkasi V. Ramabadran,et al.  A coding scheme for m-out-of-n codes , 1990, IEEE Trans. Commun..

[57]  Mark Horowitz,et al.  A 2.4 Gb/s/pin simultaneous bidirectional parallel link with per pin skew compensation , 2000 .

[58]  Donald M. Chiarulli,et al.  Optoelectronic Multi-Chip Module Demonstration System , 2003 .

[59]  Magdy S. Abadir,et al.  Minimal test for coupling faults in word-oriented memories , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[60]  Donald M. Chiarulli,et al.  Optoelectronic Multi-Chip-Module Implementation of a 64-Channel Fiber Switch , 2001 .

[61]  W. Wilhelm A new scalable VLSI architecture for Reed-Solomon decoders , 1999 .

[62]  Ron M. Roth,et al.  On MDS extensions of generalized Reed-Solomon codes , 1986, IEEE Trans. Inf. Theory.

[63]  Toby Berger,et al.  Coding for noisy channels with input-dependent insertions , 1977, IEEE Trans. Inf. Theory.

[64]  Y Li,et al.  Polymer fiber-image-guide-based embedded optical circuit board. , 1999, Applied optics.

[65]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[66]  Mark Horowitz,et al.  A 700-Mb/s/pin CMOS signaling interface using current integrating receivers , 1997 .

[67]  Robert McEliece,et al.  The Theory of Information and Coding: Information theory , 2002 .

[68]  Wolfgang Willems,et al.  Codes of Small Defect , 1997, Des. Codes Cryptogr..

[69]  T. Lee,et al.  A 0.4-/spl mu/m CMOS 10-Gb/s 4-PAM pre-emphasis serial link transmitter , 1999 .

[70]  D. C. Hiarulli,et al.  OPTOELECTRONIC MULTI-CHIP MODULES , 2004 .

[71]  Kurt Keutzer,et al.  Developing a Flexible Interface for RapidIO, Hypertransport, and PCI-Express , 2004 .

[72]  Jah-Ming Hsu,et al.  An area-efficient pipelined VLSI architecture for decoding of Reed-Solomon codes based on a time-domain algorithm , 1997, IEEE Trans. Circuits Syst. Video Technol..

[73]  G. David Forney,et al.  On decoding BCH codes , 1965, IEEE Trans. Inf. Theory.

[74]  Tadao Kasami A decoding procedure for multiple-error-correcting cyclic codes , 1964, IEEE Trans. Inf. Theory.

[75]  Donatella Sciuto,et al.  Conditions for the design of circuits with concurrent error detection properties , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[76]  Hyunchul Shin,et al.  An area-efficient VLSI architecture of a Reed-Solomon decoder/encoder for digital VCRs , 1997 .

[77]  L. Benini,et al.  Xpipes: a network-on-chip architecture for gigascale systems-on-chip , 2004, IEEE Circuits and Systems Magazine.

[78]  Kiyoung Choi,et al.  Narrow bus encoding for low-power DSP systems , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[79]  H. Blennemann,et al.  Off-chip 400 Mbps signal transmission: noise reduction using non-resonant lengths and other techniques , 1996, Proceedings 1996 IEEE Multi-Chip Module Conference (Cat. No.96CH35893).

[80]  Hsie-Chia Chang,et al.  A low-power Reed-Solomon decoder for STM-16 optical communications , 2002, Proceedings. IEEE Asia-Pacific Conference on ASIC,.

[81]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .