Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics

[1]  Douglas G. Altman,et al.  Measurement in Medicine: The Analysis of Method Comparison Studies , 1983 .

[2]  R. Knighton,et al.  Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. , 2005, Investigative ophthalmology & visual science.

[3]  A. Sommer,et al.  The nerve fiber layer in the diagnosis of glaucoma. , 1977, Archives of ophthalmology.

[4]  R. Knighton,et al.  An Optical Model of the Human Retinal Nerve Fiber Layer: Implications of Directional Reflectance for Variability of Clinical Measurements , 2000, Journal of glaucoma.

[5]  R. D. Ferguson,et al.  Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[7]  Masanori Hangai,et al.  Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[8]  R Varma,et al.  Retinal nerve fiber layer thickness in normal human eyes. , 1996, Ophthalmology.

[9]  Krishnakumar Venkateswaran,et al.  Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope. , 2005, Applied optics.

[10]  Barry Cense,et al.  In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. , 2004, Journal of biomedical optics.

[11]  Bingqing Wang,et al.  Birefringence measurement of the retinal nerve fiber layer by swept source polarization sensitive optical coherence tomography , 2011, Optics express.

[12]  D. Greenfield,et al.  Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. , 2007, Investigative ophthalmology & visual science.

[13]  R. Knighton,et al.  Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry. , 2002, Ophthalmology.

[14]  J Caprioli,et al.  Slope of the peripapillary nerve fiber layer surface in glaucoma. , 1998, Investigative ophthalmology & visual science.

[15]  Ravi S. Jonnal,et al.  Coherence gating and adaptive optics in the eye , 2003, SPIE BiOS.

[16]  R. Harwerth,et al.  Modeling the effects of aging on retinal ganglion cell density and nerve fiber layer thickness , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[17]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[19]  R. Knighton,et al.  Directional and spectral reflectance of the rat retinal nerve fiber layer. , 1999, Investigative ophthalmology & visual science.

[20]  Joel S Schuman,et al.  Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. , 2008, Ophthalmology.

[21]  Dong Myung Kim,et al.  Ability of Stratus OCT to identify localized retinal nerve fiber layer defects in patients with normal standard automated perimetry results. , 2007, Investigative ophthalmology & visual science.

[22]  R. Harwerth,et al.  Age-related losses of retinal ganglion cells and axons. , 2008, Investigative ophthalmology & visual science.

[23]  R. Knighton,et al.  Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry. , 2000, American journal of ophthalmology.

[24]  A. Sommer,et al.  Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. , 1991, Archives of ophthalmology.

[25]  Bernd Hamann,et al.  Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography. , 2009, Optics express.

[26]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[27]  Barry Cense,et al.  Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources. , 2009, Optics express.

[28]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[29]  M. Monteiro,et al.  Comparison of the GDx VCC scanning laser polarimeter and the stratus optical coherence tomograph in the detection of band atrophy of the optic nerve , 2007, Eye.

[30]  I Lavery,et al.  Safe use of lasers. , 1978, Occupational health; a journal for occupational health nurses.

[31]  J Katz,et al.  Quantitative grading of nerve fiber layer photographs. , 1993, Ophthalmology.

[32]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[33]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[34]  L Frisén,et al.  Fundoscopy of nerve fiber layer defects in glaucoma. , 1973, Investigative ophthalmology.

[35]  Sung Yong Kang,et al.  Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. , 2010, Investigative ophthalmology & visual science.

[36]  R. F. Malta,et al.  Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. , 2009, American journal of ophthalmology.

[37]  Bernd Hamann,et al.  Segmentation of Three-dimensional Retinal Image Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[38]  Christian Y Mardin,et al.  Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. , 2009, Investigative ophthalmology & visual science.

[39]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[40]  R. Bourne,et al.  Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. , 2006, Investigative ophthalmology & visual science.

[41]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[42]  Larry N. Thibos,et al.  The mechanisms of vision loss associated with a cotton wool spot , 2009, Vision Research.

[43]  H. Fujita,et al.  Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. , 2010, Journal of biomedical optics.

[44]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina. , 2008, Optics express.

[45]  Barry Cense,et al.  Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. , 2009, Optics express.

[46]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[47]  C. Hitzenberger,et al.  High speed spectral domain polarization sensitive optical coherence tomography of the human retina. , 2005, Optics express.

[48]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[49]  N. Miller,et al.  Monochromatic (red-free) photography and ophthalmoscopy of the peripapillary retinal nerve fiber layer. , 1978, Investigative ophthalmology & visual science.

[50]  Robert J Zawadzki,et al.  Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  Joseph A Izatt,et al.  In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. , 2007, Journal of biomedical optics.

[52]  Robert N Weinreb,et al.  A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. , 2010, Investigative ophthalmology & visual science.

[53]  Robert N Weinreb,et al.  Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation. , 2009, Investigative ophthalmology & visual science.

[54]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.