Generalized simulation relations with applications in automata theory

Finite-state automata are a central computational model in computer science, with numerous and diverse applications. In one such application, viz. model-checking, automata over infinite words play a central role. In this thesis, we concentrate on Buchi automata (BA), which are arguably the simplest finite-state model recognizing languages of infinite words. Two algorithmic problems are paramount in the theory of automata: language inclusion and automata minimization. They are both PSPACE-complete, thus under standard complexity-theoretic assumptions no deterministic algorithm with worst case polynomial time can be expected. In this thesis, we develop techniques to tackle these problems. In automata minimization, one seeks the smallest automaton recognizing a given language (“small” means with few states). Despite PSPACE-hardness of minimization, the size of an automaton can often be reduced substantially by means of quotienting. In quotienting, states deemed equivalent according to a given equivalence are merged together; if this merging operation preserves the language, then the equivalence is said to be Good for Quotienting (GFQ). In general, quotienting cannot achieve exact minimization, but, in practice, it can still offer a very good reduction in size. The central topic of this thesis is the design of GFQ equivalences for Buchi automata. A particularly successful approach to the design of GFQ equivalences is based on simulation relations. Simulation relations are a powerful tool to compare the local behavior of automata. The main contribution of this thesis is to generalize simulations, by relaxing locality in three perpendicular ways: by fixing the input word in advance (fixed-word simulations, Ch. 3), by allowing jumps (jumping simulations, Ch. 4), and by using multiple pebbles (multipebble simulations for alternating BA, Ch. 5). In each case, we show that our generalized simulations induce GFQ equivalences. For fixed-word simulation, we argue that it is the coarsest GFQ simulation implying language inclusion, by showing that it subsumes a natural hierarchy of GFQ multipebble simulations. From a theoretical perspective, our study significantly extends the theory of simulations for BA; relaxing locality is a general principle, and it may find useful applications outside automata theory. From a practical perspective, we obtain GFQ equivalences coarser than previously possible. This yields smaller quotient automata, which is beneficial in applications. Finally, we show how simulation relations have recently been applied to significantly optimize exact (exponential) language inclusion algorithms (Ch. 6), thus extending their practical applicability.

[1]  N. Klarlund Progress Measures and Finite Arguments for Infinite Computations , 1990 .

[2]  Orna Grumberg,et al.  Simulation Based Minimization , 2000, CADE.

[3]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[4]  Fabio Somenzi,et al.  Fair Simulation Minimization , 2002, CAV.

[5]  Zohar Manna,et al.  A hierarchy of temporal properties (invited paper, 1989) , 1990, PODC '90.

[6]  F. Laroussinie,et al.  Multipebble Simulations for Alternating Automata-( Extended Abstract ) , 2010 .

[7]  Jean-François Raskin,et al.  Antichains for the Automata-Based Approach to Model-Checking , 2009, Log. Methods Comput. Sci..

[8]  A. Finkelstein,et al.  A comedy of errors: the London Ambulance Service case study , 1996, Proceedings of the 8th International Workshop on Software Specification and Design.

[9]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[10]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[11]  Masami Hagiya,et al.  XML Schema Containment Checking Based on Semi-implicit Techniques , 2003, CIAA.

[12]  Martin Hofmann,et al.  A Proof System for the Linear Time µ-Calculus , 2006, FSTTCS.

[13]  Thomas A. Henzinger,et al.  Fair Bisimulation , 2000, TACAS.

[14]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[15]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[16]  Tayssir Touili,et al.  Antichain-Based Universality and Inclusion Testing over Nondeterministic Finite Tree Automata , 2008, CIAA.

[17]  Rüdiger Ehlers,et al.  Minimising Deterministic Büchi Automata Precisely Using SAT Solving , 2010, SAT.

[18]  Ronald Fagin,et al.  On Monadic NP vs. Monadic co-NP , 1995, Inf. Comput..

[19]  Bernd Finkbeiner,et al.  On the Virtue of Patience: Minimizing Büchi Automata , 2010, SPIN.

[20]  J. Richard Buchi Using Determinancy of Games to Eliminate Quantifiers , 1977 .

[21]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[22]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[23]  Kedar S. Namjoshi,et al.  Environment modeling and language universality , 2000, TODE.

[24]  Donald E. Knuth Two notes on notation , 1992 .

[25]  Véronique Bruyère,et al.  Antichain-Based QBF Solving , 2011, ATVA.

[26]  C. Rattray,et al.  Specification and Verification of Concurrent Systems , 1990, Workshops in Computing.

[27]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[28]  Pierre Ganty,et al.  Fixed point guided abstraction refinement for alternating automata , 2010, Theor. Comput. Sci..

[29]  Orna Grumberg,et al.  Applicability of fair simulation , 2002, Inf. Comput..

[30]  Parosh Aziz Abdulla,et al.  Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing , 2010, CAV.

[31]  Chin Soon Lee Program Termination Analysis in Polynomial Time , 2002, GPCE.

[32]  Lorenzo Clemente Büchi Automata Can Have Smaller Quotients , 2011, ICALP.

[33]  Moshe Y. Vardi Branching vs. Linear Time: Final Showdown , 2001, TACAS.

[34]  Seth Fogarty,et al.  RICE UNIVERSITY Buchi Containment and Size-Change Termination , 2008 .

[35]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[36]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[37]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[38]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Bu"chi Automata , 2005, SIAM J. Comput..

[39]  Jean-François Raskin,et al.  An Antichain Algorithm for LTL Realizability , 2009, CAV.

[40]  Kousha Etessami,et al.  Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.

[41]  Parosh Aziz Abdulla,et al.  Mediating for Reduction (on Minimizing Alternating Büchi Automata) , 2009, FSTTCS.

[42]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[43]  Joel H. Spencer,et al.  Threshold spectra via the Ehrenfeucht game , 1991, Discret. Appl. Math..

[44]  Christof Löding,et al.  Efficient minimization of deterministic weak omega-automata , 2001, Inf. Process. Lett..

[45]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[46]  Parosh Aziz Abdulla,et al.  Advanced Ramsey-Based Büchi Automata Inclusion Testing , 2011, CONCUR.

[47]  Sven Schewe,et al.  Beyond Hyper-Minimisation---Minimising DBAs and DPAs is NP-Complete , 2010, FSTTCS.

[48]  Krishnendu Chatterjee,et al.  Algorithms for Omega-Regular Games with Imperfect Information , 2006, Log. Methods Comput. Sci..

[49]  Moshe Y. Vardi The Büchi Complementation Saga , 2007, STACS.

[50]  Orna Kupferman,et al.  Verification of Fair Transition Systems , 1998, Chic. J. Theor. Comput. Sci..

[51]  N. Lynch,et al.  Forward and backward simulations , 1993 .

[52]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[53]  Jacob A. Abraham,et al.  Environment modeling and efficient state reachability checking , 1999 .

[54]  Maurice Nivat,et al.  A note about minimal non-deterministic automata , 1992, Bull. EATCS.

[55]  Alan Edelman,et al.  The Mathematics of the Pentium Division Bug , 1997, SIAM Rev..

[56]  Martin Lange,et al.  Size-Change Termination and Satisfiability for Linear-Time Temporal Logics , 2011, FroCoS.

[57]  V. Vitaliev After all: How many engineers does it take to change a lightbulb? , 2012 .

[58]  Orna Kupferman,et al.  On the Complexity of Parity Word Automata , 2001, FoSSaCS.

[59]  Georg Schnitger,et al.  Minimizing nfa's and regular expressions , 2007, J. Comput. Syst. Sci..

[60]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[61]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[62]  Thomas A. Henzinger,et al.  Fair Simulation , 1997, Inf. Comput..

[63]  Thomas Wilke,et al.  Simulation relations for alternating Büchi automata , 2005, Theor. Comput. Sci..

[64]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[65]  Bogdan S. Chlebus Domino-Tiling Games , 1986, J. Comput. Syst. Sci..

[66]  Alan J. Hu,et al.  Checking for Language Inclusion Using Simulation Preorders , 1991, CAV.

[67]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[68]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[69]  Nir Piterman,et al.  Minimizing Generalized Büchi Automata , 2006, CAV.

[70]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[71]  Jean-François Raskin,et al.  ALASKA: antichains for logic, automata and symbolic Kripke structures analysis , 2008 .

[72]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[73]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[74]  Edmund M. Clarke,et al.  Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .

[75]  Orna Kupferman,et al.  Safraless decision procedures , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[76]  Thomas Wilke,et al.  Logic and automata : history and perspectives , 2007 .

[77]  Jean-François Raskin,et al.  Antichain Algorithms for Finite Automata , 2010, TACAS.

[78]  Oliver Friedmann,et al.  Ramsey-Based Analysis of Parity Automata , 2012, TACAS.

[79]  Moshe Y. Vardi,et al.  Efficient Büchi Universality Checking , 2010, TACAS.

[80]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[81]  Sven Schewe,et al.  Büchi complementation made tight , 2009, STACS.

[82]  Jean-François Raskin,et al.  Antichains and compositional algorithms for LTL synthesis , 2011, Formal Methods Syst. Des..

[83]  Moshe Y. Vardi,et al.  Büchi Complementation and Size-Change Termination , 2009, TACAS.

[84]  Kousha Etessami,et al.  A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.

[85]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[86]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[87]  Roberto Sebastiani,et al.  "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.

[88]  Nils Klarlund,et al.  Progress measures for complementation omega -automata with applications to temporal logic , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[89]  Moshe Y. Vardi,et al.  LTL Satisfiability Checking , 2007, SPIN.

[90]  Jean-François Raskin,et al.  Improved Algorithms for the Automata-Based Approach to Model-Checking , 2007, TACAS.

[91]  Luca Aceto,et al.  Reactive Systems: Modelling, Specification and Verification , 2007 .

[92]  Moshe Y. Vardi Alternating Automata and Program Verification , 1995, Computer Science Today.

[93]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[94]  Orna Kupferman,et al.  On Complementing Nondeterministic Büchi Automata , 2003, CHARME.

[95]  Nancy A. Lynch,et al.  Forward and Backward Simulations: I. Untimed Systems , 1995, Inf. Comput..

[96]  Yih-Kuen Tsay,et al.  State of Büchi Complementation , 2010, CIAA.

[97]  Nancy G. Leveson,et al.  An investigation of the Therac-25 accidents , 1993, Computer.

[98]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[99]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[100]  Parosh Aziz Abdulla,et al.  When Simulation Meets Antichains , 2010, TACAS.

[101]  Thomas Wilke,et al.  Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.

[102]  Christof Löding,et al.  Ramsey-Based Büchi Complementation , 2012 .

[103]  B Cipra How Number Theory Got the Best of the Pentium Chip , 1995, Science.

[104]  Orna Kupferman,et al.  Verification of Fair Transisiton Systems , 1996, CAV.

[105]  Jean-François Raskin,et al.  Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking , 2008, TACAS.

[106]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[107]  John Harrison,et al.  Handbook of Practical Logic and Automated Reasoning , 2009 .

[108]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[109]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[110]  Krzysztof R. Apt,et al.  Lectures in Game Theory for Computer Scientists , 2011 .