Generalized simulation relations with applications in automata theory
暂无分享,去创建一个
[1] N. Klarlund. Progress Measures and Finite Arguments for Infinite Computations , 1990 .
[2] Orna Grumberg,et al. Simulation Based Minimization , 2000, CADE.
[3] Pierre Wolper,et al. Reasoning About Infinite Computations , 1994, Inf. Comput..
[4] Fabio Somenzi,et al. Fair Simulation Minimization , 2002, CAV.
[5] Zohar Manna,et al. A hierarchy of temporal properties (invited paper, 1989) , 1990, PODC '90.
[6] F. Laroussinie,et al. Multipebble Simulations for Alternating Automata-( Extended Abstract ) , 2010 .
[7] Jean-François Raskin,et al. Antichains for the Automata-Based Approach to Model-Checking , 2009, Log. Methods Comput. Sci..
[8] A. Finkelstein,et al. A comedy of errors: the London Ambulance Service case study , 1996, Proceedings of the 8th International Workshop on Software Specification and Design.
[9] Albert R. Meyer,et al. Word problems requiring exponential time(Preliminary Report) , 1973, STOC.
[10] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[11] Masami Hagiya,et al. XML Schema Containment Checking Based on Semi-implicit Techniques , 2003, CIAA.
[12] Martin Hofmann,et al. A Proof System for the Linear Time µ-Calculus , 2006, FSTTCS.
[13] Thomas A. Henzinger,et al. Fair Bisimulation , 2000, TACAS.
[14] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[15] Thomas A. Henzinger,et al. Alternating Refinement Relations , 1998, CONCUR.
[16] Tayssir Touili,et al. Antichain-Based Universality and Inclusion Testing over Nondeterministic Finite Tree Automata , 2008, CIAA.
[17] Rüdiger Ehlers,et al. Minimising Deterministic Büchi Automata Precisely Using SAT Solving , 2010, SAT.
[18] Ronald Fagin,et al. On Monadic NP vs. Monadic co-NP , 1995, Inf. Comput..
[19] Bernd Finkbeiner,et al. On the Virtue of Patience: Minimizing Büchi Automata , 2010, SPIN.
[20] J. Richard Buchi. Using Determinancy of Games to Eliminate Quantifiers , 1977 .
[21] Tao Jiang,et al. Minimal NFA Problems are Hard , 1991, SIAM J. Comput..
[22] Pierre Wolper,et al. The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..
[23] Kedar S. Namjoshi,et al. Environment modeling and language universality , 2000, TODE.
[24] Donald E. Knuth. Two notes on notation , 1992 .
[25] Véronique Bruyère,et al. Antichain-Based QBF Solving , 2011, ATVA.
[26] C. Rattray,et al. Specification and Verification of Concurrent Systems , 1990, Workshops in Computing.
[27] Pierre Wolper,et al. An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.
[28] Pierre Ganty,et al. Fixed point guided abstraction refinement for alternating automata , 2010, Theor. Comput. Sci..
[29] Orna Grumberg,et al. Applicability of fair simulation , 2002, Inf. Comput..
[30] Parosh Aziz Abdulla,et al. Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing , 2010, CAV.
[31] Chin Soon Lee. Program Termination Analysis in Polynomial Time , 2002, GPCE.
[32] Lorenzo Clemente. Büchi Automata Can Have Smaller Quotients , 2011, ICALP.
[33] Moshe Y. Vardi. Branching vs. Linear Time: Final Showdown , 2001, TACAS.
[34] Seth Fogarty,et al. RICE UNIVERSITY Buchi Containment and Size-Change Termination , 2008 .
[35] Yuri Gurevich,et al. Trees, automata, and games , 1982, STOC '82.
[36] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[37] Jean-Eric Pin,et al. Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.
[38] Kousha Etessami,et al. Fair Simulation Relations, Parity Games, and State Space Reduction for Bu"chi Automata , 2005, SIAM J. Comput..
[39] Jean-François Raskin,et al. An Antichain Algorithm for LTL Realizability , 2009, CAV.
[40] Kousha Etessami,et al. Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata , 2001, ICALP.
[41] Parosh Aziz Abdulla,et al. Mediating for Reduction (on Minimizing Alternating Büchi Automata) , 2009, FSTTCS.
[42] Fred Kröger,et al. Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.
[43] Joel H. Spencer,et al. Threshold spectra via the Ehrenfeucht game , 1991, Discret. Appl. Math..
[44] Christof Löding,et al. Efficient minimization of deterministic weak omega-automata , 2001, Inf. Process. Lett..
[45] Carsten Fritz,et al. Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.
[46] Parosh Aziz Abdulla,et al. Advanced Ramsey-Based Büchi Automata Inclusion Testing , 2011, CONCUR.
[47] Sven Schewe,et al. Beyond Hyper-Minimisation---Minimising DBAs and DPAs is NP-Complete , 2010, FSTTCS.
[48] Krishnendu Chatterjee,et al. Algorithms for Omega-Regular Games with Imperfect Information , 2006, Log. Methods Comput. Sci..
[49] Moshe Y. Vardi. The Büchi Complementation Saga , 2007, STACS.
[50] Orna Kupferman,et al. Verification of Fair Transition Systems , 1998, Chic. J. Theor. Comput. Sci..
[51] N. Lynch,et al. Forward and backward simulations , 1993 .
[52] Joseph Sifakis,et al. Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.
[53] Jacob A. Abraham,et al. Environment modeling and efficient state reachability checking , 1999 .
[54] Maurice Nivat,et al. A note about minimal non-deterministic automata , 1992, Bull. EATCS.
[55] Alan Edelman,et al. The Mathematics of the Pentium Division Bug , 1997, SIAM Rev..
[56] Martin Lange,et al. Size-Change Termination and Satisfiability for Linear-Time Temporal Logics , 2011, FroCoS.
[57] V. Vitaliev. After all: How many engineers does it take to change a lightbulb? , 2012 .
[58] Orna Kupferman,et al. On the Complexity of Parity Word Automata , 2001, FoSSaCS.
[59] Georg Schnitger,et al. Minimizing nfa's and regular expressions , 2007, J. Comput. Syst. Sci..
[60] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[61] Satoru Miyano,et al. Alternating Finite Automata on omega-Words , 1984, CAAP.
[62] Thomas A. Henzinger,et al. Fair Simulation , 1997, Inf. Comput..
[63] Thomas Wilke,et al. Simulation relations for alternating Büchi automata , 2005, Theor. Comput. Sci..
[64] Fabio Somenzi,et al. Efficient Büchi Automata from LTL Formulae , 2000, CAV.
[65] Bogdan S. Chlebus. Domino-Tiling Games , 1986, J. Comput. Syst. Sci..
[66] Alan J. Hu,et al. Checking for Language Inclusion Using Simulation Preorders , 1991, CAV.
[67] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[68] S. Safra,et al. On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[69] Nir Piterman,et al. Minimizing Generalized Büchi Automata , 2006, CAV.
[70] Orna Kupferman,et al. Weak alternating automata are not that weak , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.
[71] Jean-François Raskin,et al. ALASKA: antichains for logic, automata and symbolic Kripke structures analysis , 2008 .
[72] E. Allen Emerson,et al. Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[73] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[74] Edmund M. Clarke,et al. Formal Methods: State of the Art and Future Directions Working Group Members , 1996 .
[75] Orna Kupferman,et al. Safraless decision procedures , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[76] Thomas Wilke,et al. Logic and automata : history and perspectives , 2007 .
[77] Jean-François Raskin,et al. Antichain Algorithms for Finite Automata , 2010, TACAS.
[78] Oliver Friedmann,et al. Ramsey-Based Analysis of Parity Automata , 2012, TACAS.
[79] Moshe Y. Vardi,et al. Efficient Büchi Universality Checking , 2010, TACAS.
[80] Edmund M. Clarke,et al. Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.
[81] Sven Schewe,et al. Büchi complementation made tight , 2009, STACS.
[82] Jean-François Raskin,et al. Antichains and compositional algorithms for LTL synthesis , 2011, Formal Methods Syst. Des..
[83] Moshe Y. Vardi,et al. Büchi Complementation and Size-Change Termination , 2009, TACAS.
[84] Kousha Etessami,et al. A Hierarchy of Polynomial-Time Computable Simulations for Automata , 2002, CONCUR.
[85] Hao Wang. Proving theorems by pattern recognition — II , 1961 .
[86] Tsunehiko Kameda,et al. On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.
[87] Roberto Sebastiani,et al. "More Deterministic" vs. "Smaller" Büchi Automata for Efficient LTL Model Checking , 2003, CHARME.
[88] Nils Klarlund,et al. Progress measures for complementation omega -automata with applications to temporal logic , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[89] Moshe Y. Vardi,et al. LTL Satisfiability Checking , 2007, SPIN.
[90] Jean-François Raskin,et al. Improved Algorithms for the Automata-Based Approach to Model-Checking , 2007, TACAS.
[91] Luca Aceto,et al. Reactive Systems: Modelling, Specification and Verification , 2007 .
[92] Moshe Y. Vardi. Alternating Automata and Program Verification , 1995, Computer Science Today.
[93] J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic , 1990 .
[94] Orna Kupferman,et al. On Complementing Nondeterministic Büchi Automata , 2003, CHARME.
[95] Nancy A. Lynch,et al. Forward and Backward Simulations: I. Untimed Systems , 1995, Inf. Comput..
[96] Yih-Kuen Tsay,et al. State of Büchi Complementation , 2010, CIAA.
[97] Nancy G. Leveson,et al. An investigation of the Therac-25 accidents , 1993, Computer.
[98] Albert R. Meyer,et al. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.
[99] Thomas A. Henzinger,et al. Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.
[100] Parosh Aziz Abdulla,et al. When Simulation Meets Antichains , 2010, TACAS.
[101] Thomas Wilke,et al. Automata Logics, and Infinite Games , 2002, Lecture Notes in Computer Science.
[102] Christof Löding,et al. Ramsey-Based Büchi Complementation , 2012 .
[103] B Cipra. How Number Theory Got the Best of the Pentium Chip , 1995, Science.
[104] Orna Kupferman,et al. Verification of Fair Transisiton Systems , 1996, CAV.
[105] Jean-François Raskin,et al. Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking , 2008, TACAS.
[106] Robin Milner,et al. An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.
[107] John Harrison,et al. Handbook of Practical Logic and Automated Reasoning , 2009 .
[108] Dana S. Scott,et al. Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..
[109] Neil D. Jones,et al. The size-change principle for program termination , 2001, POPL '01.
[110] Krzysztof R. Apt,et al. Lectures in Game Theory for Computer Scientists , 2011 .