On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks

In this paper, a relationship is discussed between three common assumptions made in the literature to prove local or global asymptotic stability of the synchronization manifold in networks of coupled nonlinear dynamical systems. In such networks, each node, when uncoupled, is described by a nonlinear ordinary differential equation of the form ẋ = <i>f</i> (<i>x</i>,<i>t</i>) . In this paper, we establish links between the QUAD condition on <i>f</i> (<i>x</i>, <i>t</i>), i.e.,(<i>x</i>-<i>y</i>)<sup>T</sup>[<i>f</i>(<i>x</i>, <i>t</i>)-<i>f</i>(<i>y</i>, <i>t</i>)] - (<i>x</i>-<i>y</i>)<sup>T</sup> Δ(<i>x</i>-<i>y</i>) ≤-ω(<i>x</i>-<i>y</i>)<i>T</i>(<i>x</i>-<i>y</i>) for some arbitrary Δ and ω, and contraction theory. We then investigate the relationship between the assumption of <i>f</i> being Lipschitz and the QUAD condition. We show the usefulness of the links highlighted in this paper to obtain proofs of asymptotic synchronization in networks of identical nonlinear oscillators and illustrate the results via numerical simulations on some representative examples.

[1]  Tiejun Li,et al.  Structure and Dynamics of Complex Networks , 2012 .

[2]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[3]  Tianping Chen,et al.  Synchronization in general complex delayed dynamical networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Tianping Chen,et al.  Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling , 2007 .

[5]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[6]  Mario di Bernardo,et al.  How to Synchronize Biological Clocks , 2009, J. Comput. Biol..

[7]  Chai Wah Wu Localization of effective pinning control in complex networks of dynamical systems , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[8]  Jean-Jacques E. Slotine,et al.  Contractionanalysis of synchronization innetworksof nonlinearly coupledoscillators , 2004 .

[9]  C. K. Michael Tse,et al.  Adaptive Feedback Synchronization of a General Complex Dynamical Network With Delayed Nodes , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Guanrong Chen,et al.  Global synchronization and asymptotic stability of complex dynamical networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  W. Lohmiller,et al.  Contraction analysis of non-linear distributed systems , 2005 .

[12]  Mario di Bernardo,et al.  Adaptive synchronization of complex networks , 2008, Int. J. Comput. Math..

[13]  Guo-Ping Jiang,et al.  A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[15]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[16]  Tianping Chen,et al.  Boundedness and synchronization of y-coupled Lorenz systems with or without controllers ☆ , 2008 .

[17]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[18]  D. Ho,et al.  Local and global synchronization in general complex dynamical networks with delay coupling , 2008 .

[19]  David J. Hill,et al.  Attack Vulnerability of Complex Communication Networks , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[20]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[21]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[22]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[23]  Jinde Cao,et al.  On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Xiwei Chen,et al.  Network Synchronization with an Adaptive Coupling Strength , 2006 .

[25]  David J. Hill,et al.  Power systems as dynamic networks , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[26]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[27]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[28]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[29]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[30]  Mario di Bernardo,et al.  Solving the rendezvous problem for multi-agent systems using contraction theory , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[31]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[32]  M. Cross,et al.  Pinning control of spatiotemporal chaos , 1997, chao-dyn/9705001.

[33]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[34]  Mario di Bernardo,et al.  Decentralized Adaptive Control for Synchronization and Consensus of Complex Networks , 2009 .

[35]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[36]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[37]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[38]  Mario di Bernardo,et al.  An Algorithm to Prove Contraction, Consensus, and Network Synchronization , 2009 .

[39]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[40]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[41]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[42]  Liang Chen,et al.  Synchronization: An Obstacle to Identification of Network Topology , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[43]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[44]  Tianping Chen,et al.  Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix , 2008 .

[45]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[46]  Maurizio Porfiri,et al.  Evolution of Complex Networks via Edge Snapping , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[47]  Maurizio Porfiri,et al.  Synchronization in Random Weighted Directed Networks , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[48]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[50]  Mario di Bernardo,et al.  Fully adaptive pinning control of complex networks , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[51]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[52]  Hui Zheng,et al.  Probability Distribution of Blackouts in Complex Power Networks , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[53]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[54]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[55]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[56]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[57]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[58]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[59]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[60]  Wei Wu,et al.  Cluster Synchronization of Linearly Coupled Complex Networks Under Pinning Control , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.