Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization

In this chapter we present a hybridization of a stochastic based search approach for multi-objective optimization with a deterministic domain decomposition of the solution space. Prior to the presentation of the algorithm we introduce a general formulation of the optimization problem that is suitable to describe both single and multi-objective problems. The stochastic approach, based on behaviorism, combined with the decomposition of the solutions pace was tested on a set of standard multi-objective optimization problems and on a simple but representative case of space trajectory design.

[1]  C. Stephens,et al.  Global Optimization Requires Global Information , 1998 .

[2]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[3]  Pini Gurfil,et al.  Niching genetic algorithms-based characterization of geocentric orbits in the 3D elliptic restricted three-body problem , 2002 .

[4]  Massimiliano Vasile A behavioral-based meta-heuristic for robust global trajectory optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[5]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[6]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[7]  Carlos A. Coello Coello,et al.  A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer , 2007, Evolutionary Computation in Dynamic and Uncertain Environments.

[8]  G. Radice,et al.  Advanced Global Optimisation Tools for Mission Analysis and Design , 2004 .

[9]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[10]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[11]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[12]  Dick den Hertog,et al.  Maximin Latin Hypercube Designs in Two Dimensions , 2007, Oper. Res..

[13]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[14]  John Mark Bishop,et al.  Advanced global optimisation for mission analysis and design , 2004 .

[15]  Massimiliano Vasile,et al.  Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories , 2006 .

[16]  Massimiliano Vasile Combining Evolution Programs and Gradient Methods for WSB Transfer Optimisation , 2003 .

[17]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[18]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[19]  G. Rauwolf,et al.  Near-optimal low-thrust orbit transfers generated by a genetic algorithm , 1996 .

[20]  P. Cage,et al.  Interplanetary trajectory optimization using a genetic algorithm , 1994 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[23]  Bernd Dachwald,et al.  Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol , 2004 .

[24]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.