Recent advances in the biomimicry of structural colours.

Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.

[1]  Serge Berthier,et al.  Photonique des Morphos , 2010 .

[2]  Zhongze Gu,et al.  Spherical colloidal photonic crystals. , 2014, Accounts of chemical research.

[3]  Stacey F. Bent,et al.  A brief review of atomic layer deposition: from fundamentals to applications , 2014 .

[4]  D. Weitz,et al.  Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. , 2010, Small.

[5]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[6]  Miguel Holgado,et al.  Electrophoretic Deposition To Control Artificial Opal Growth , 1999 .

[7]  Jane F. Bertone,et al.  Single-Crystal Colloidal Multilayers of Controlled Thickness , 1999 .

[8]  M. Sailor,et al.  Porous Silicon‐Based Optical Microsensors for Volatile Organic Analytes: Effect of Surface Chemistry on Stability and Specificity , 2010 .

[9]  A. Bianco,et al.  Spatially modulated structural colour in bird feathers , 2015, Scientific Reports.

[10]  Tural Khudiyev,et al.  Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos L.) drakes , 2014, Scientific Reports.

[11]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[12]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[13]  Zhaokun Yang,et al.  Free-standing molecularly imprinted photonic hydrogels based on β-cyclodextrin for the visual detection of L-tryptophan , 2015 .

[14]  David L. Kaplan,et al.  Silk inverse opals , 2012, Nature Photonics.

[15]  J. Aizenberg,et al.  Creating bio-inspired hierarchical 3D–2D photonic stacks via planar lithography on self-assembled inverse opals , 2012, Bioinspiration & biomimetics.

[16]  Igor A. Sukhoivanov,et al.  Photonic Crystals: Physics and Practical Modeling , 2009 .

[17]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[18]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[19]  Mecit Yaman,et al.  Structural coloring in large scale core-shell nanowires. , 2011, Nano letters.

[20]  Seung-Man Yang,et al.  Controlled Pixelation of Inverse Opaline Structures Towards Reflection‐Mode Displays , 2014, Advanced materials.

[21]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[22]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[23]  T. Tan,et al.  Iridescence of a shell of mollusk Haliotis Glabra. , 2004, Optics express.

[24]  Di Zhang,et al.  Biomimetic optical materials: Integration of nature’s design for manipulation of light , 2013 .

[25]  M. Kondo,et al.  Photocurrent enhancement in thin‐film silicon solar cells by combination of anti‐reflective sub‐wavelength structures and light‐trapping textures , 2015 .

[26]  Wadood Y. Hamad,et al.  Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films , 2010 .

[27]  B. Viel,et al.  Reversible Deformation of Opal Elastomers , 2007 .

[28]  M. Torkkeli,et al.  Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching , 2004, Nature materials.

[29]  R. Marchessault,et al.  In vitro chiral nematic ordering of chitin crystallites. , 1993, International journal of biological macromolecules.

[30]  Peter Spahn,et al.  3D Bulk Ordering in Macroscopic Solid Opaline Films by Edge‐Induced Rotational Shearing , 2011, Advanced materials.

[31]  M. Solomon,et al.  Direct current electric field assembly of colloidal crystals displaying reversible structural color. , 2014, ACS nano.

[32]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[33]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[34]  Zhong Lin Wang,et al.  Controlled replication of butterfly wings for achieving tunable photonic properties. , 2006, Nano letters.

[35]  N. Marshall,et al.  Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules , 2011, Proceedings of the Royal Society B: Biological Sciences.

[36]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[37]  Seung-Man Yang,et al.  Synthesis and assembly of structured colloidal particles , 2008 .

[38]  J. M. Cathcart,et al.  Self-Assembly of “Paint-On” Colloidal Crystals Using Poly(styrene-co-N-isopropylacrylamide) Spheres , 2007 .

[39]  A. Parker,et al.  A vision for natural photonics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Davy P Gaillot,et al.  Composite organic-inorganic butterfly scales: production of photonic structures with atomic layer deposition. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Jean Pol Vigneron,et al.  Nanoarchitecture in the black wings of Troides magellanus: a natural case of absorption enhancement in photonic materials , 2013, NanoScience + Engineering.

[42]  M. MacLachlan,et al.  Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents. , 2013, ACS macro letters.

[43]  S. Mann,et al.  Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions , 2003 .

[44]  J. Vigneron,et al.  Chapter 5 – Structural Colours , 2010 .

[45]  Kevin E. Shopsowitz,et al.  Flexible and iridescent chiral nematic mesoporous organosilica films. , 2012, Journal of the American Chemical Society.

[46]  D. Stavenga,et al.  Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal , 2012, Journal of The Royal Society Interface.

[47]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[48]  Georg von Freymann,et al.  Mesoporous bragg stack color tunable sensors. , 2006, Nano letters.

[49]  Baoping Wang,et al.  Tailoring colloidal photonic crystals with wide viewing angles. , 2013, Small.

[50]  B. You,et al.  Facile fabrication of mechanochromic-responsive colloidal crystal films. , 2011, Journal of colloid and interface science.

[51]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[52]  Joanna Aizenberg,et al.  A colloidoscope of colloid-based porous materials and their uses. , 2016, Chemical Society reviews.

[53]  Wangzhou Shi,et al.  Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus , 2011 .

[54]  D. Stavenga,et al.  High refractive index of melanin in shiny occipital feathers of a bird of paradise , 2015, Light: Science & Applications.

[55]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[56]  R. Milke,et al.  Australian sedimentary opal-A and its associated minerals: Implications for natural silica sphere formation , 2014 .

[57]  S. Okamoto,et al.  Tunable Photonic Crystals: Control of the Domain Spacings in Lamellar-Forming Diblock Copolymers by Swelling with Immiscible Selective Solvents and a Neutral Solvent , 2014 .

[58]  Rene Lopez,et al.  Structural colors: from natural to artificial systems. , 2016, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[59]  Seung‐Man Yang,et al.  Self-assembled colloidal structures for photonics , 2011 .

[60]  Hua Xiong,et al.  Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels , 2011 .

[61]  Younan Xia,et al.  Crystallization of Mesoscale Particles over Large Areas , 1998 .

[62]  Martin Maldovan,et al.  25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons , 2013, Advanced materials.

[63]  Hui Cao,et al.  Self-assembly of amorphous biophotonic nanostructures by phase separation , 2009 .

[64]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  J. Moon,et al.  Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. , 2012, Chemical communications.

[66]  Eric W. Cochran,et al.  Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation , 2006 .

[67]  Miguel Holgado,et al.  3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure , 1997 .

[68]  Z. Knittl,et al.  Optics of Thin Films , 1977 .

[69]  Bodo D Wilts,et al.  Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  Peter Vukusic,et al.  Bright-White Beetle Scales Optimise Multiple Scattering of Light , 2014, Scientific Reports.

[71]  D. Sun-Waterhouse,et al.  Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals , 2015 .

[72]  Daihyun Kim,et al.  Electrically tunable hysteretic photonic gels for nonvolatile display pixels. , 2011, Angewandte Chemie.

[73]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[74]  J. Crocker,et al.  Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. , 2009, Nature materials.

[75]  J. Baumberg,et al.  Generating Lithographically‐Defined Tunable Printed Structural Color , 2013 .

[76]  S. Kinoshita,et al.  Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model , 2011, Journal of The Royal Society Interface.

[77]  Mark P. Andrews,et al.  Nanocrystalline cellulose for covert optical encryption , 2012, Other Conferences.

[78]  Yongxing Hu,et al.  Charge stabilization of superparamagnetic colloids for high-performance responsive photonic structures. , 2012, Small.

[79]  Hanne M. van der Kooij,et al.  Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors , 2014, Advanced optical materials.

[80]  Rodolfo H. Torres,et al.  Anatomically diverse butterfly scales all produce structural colours by coherent scattering , 2006, Journal of Experimental Biology.

[81]  M. Shawkey,et al.  A protean palette: colour materials and mixing in birds and butterflies , 2009, Journal of The Royal Society Interface.

[82]  Ullrich Steiner,et al.  Biomimetic layer-by-layer assembly of artificial nacre , 2012, Nature Communications.

[83]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[84]  E. Thomas,et al.  Electrically Tunable Soft-Solid Block Copolymer Structural Color. , 2015, ACS nano.

[85]  Edwin L. Thomas,et al.  Mechanochromic Photonic Gels , 2013, Advanced materials.

[86]  Di Zhang,et al.  Inspiration from butterfly and moth wing scales: Characterization, modeling, and fabrication , 2015 .

[87]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[88]  P. Blanchet,et al.  Nanocrystalline Cellulose as Effect Pigment in Clear Coatings for Wood , 2013 .

[89]  Geoffrey A Ozin,et al.  Colloidal crystal films: advances in universality and perfection. , 2003, Journal of the American Chemical Society.

[90]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[91]  Dirk J Mulder,et al.  Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors , 2014 .

[92]  Seung-Man Yang,et al.  Flexible, Angle‐Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings , 2012, Advanced materials.

[93]  Jennifer N Cha,et al.  Discovery of a diamond-based photonic crystal structure in beetle scales. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Michael Giese,et al.  Responsive mesoporous photonic cellulose films by supramolecular cotemplating. , 2014, Angewandte Chemie.

[95]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[96]  Andreas Stein,et al.  Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond , 2001 .

[97]  Edwin L. Thomas,et al.  3D Micro‐ and Nanostructures via Interference Lithography , 2007 .

[98]  A. Stein,et al.  Inverse Opal SiO2 Photonic Crystals as Structurally‐Colored Pigments with Additive Primary Colors , 2014 .

[99]  E. Thomas,et al.  Controlling thermochromism in a photonic block copolymer gel. , 2012, Macromolecular rapid communications.

[100]  S. Sugita,et al.  The Weak Iridescent Feather Color in the Jungle Crow Corvus macrorhynchos , 2012 .

[101]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[102]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[103]  Zhongze Gu,et al.  Photonic crystal hydrogel beads used for multiplex biomolecular detection , 2009 .

[104]  Mohammadreza Khorasaninejad,et al.  Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays. , 2014, Small.

[105]  S. Mochrie,et al.  How non-iridescent colors are generated by quasi-ordered structures of bird feathers , 2009, 0912.4487.

[106]  Tongxiang Fan,et al.  Iridescent large-area ZrO2 photonic crystals using butterfly as templates , 2009 .

[107]  C. López,et al.  Synthesis and photonic bandgap characterization of polymer inverse opals , 2001 .

[108]  J. Baumberg,et al.  Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO 4 photoanodes for solar water oxidation† , 2014 .

[109]  Lei Shi,et al.  Bio-inspired sensors based on photonic structures of Morpho butterfly wings: a review , 2016 .

[110]  Ullrich Steiner,et al.  Block copolymer self-assembly for nanophotonics. , 2015, Chemical Society reviews.

[111]  Kaixi Wang,et al.  Thermoresponsive Photonic Crystal: Synergistic Effect of Poly(N-isopropylacrylamide)-co-acrylic Acid and Morpho Butterfly Wing. , 2015, ACS applied materials & interfaces.

[112]  Luke P. Lee,et al.  Inspirations from Biological Optics for Advanced Photonic Systems , 2005, Science.

[113]  D. Golmayo,et al.  ZnO Inverse Opals by Chemical Vapor Deposition , 2005 .

[114]  Y. Takeoka Stimuli-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials , 2013 .

[115]  F. Schenk,et al.  Iridescent Color: From Nature to the Painter's Palette , 2011, Leonardo.

[116]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[117]  Sung Eui Shin,et al.  Color tuning of photonic gel films by UV irradiation , 2010, OPTO.

[118]  J. Baumberg,et al.  Nanoparticle-tuned structural color from polymer opals. , 2007, Optics express.

[119]  Shuichi Kinoshita,et al.  Origin of Two-Color Iridescence in Rock Dove's Feather(Cross-disciplinary physics and related areas of science and technology) , 2007 .

[120]  Bharat Bhushan,et al.  Structural coloration in nature , 2013 .

[121]  Younan Xia,et al.  Quick, Large‐Area Assembly of a Single‐Crystal Monolayer of Spherical Particles by Unidirectional Rubbing , 2014, Advanced materials.

[122]  Hiroshi Fudouzi,et al.  Tunable structural color in organisms and photonic materials for design of bioinspired materials , 2011, Science and technology of advanced materials.

[123]  Ye Cai,et al.  3D rutile titania-based structures with morpho butterfly wing scale morphologies. , 2008, Angewandte Chemie.

[124]  D. J. Brink,et al.  Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus. , 2002, Applied optics.

[125]  Yong‐Lai Zhang,et al.  Biomimetic graphene surfaces with superhydrophobicity and iridescence. , 2012, Chemistry, an Asian journal.

[126]  A. Tok,et al.  Atomic layer deposition for nanofabrication and interface engineering. , 2012, Nanoscale.

[127]  S. Eichhorn,et al.  Bio-inspired iridescent layer-by-layer assembled cellulose nanocrystal Bragg stacks , 2015 .

[128]  J. Vigneron,et al.  Natural photonic crystals , 2012 .

[129]  Seung-Man Yang,et al.  Dynamic Modulation of Photonic Bandgaps in Crystalline Colloidal Arrays Under Electric Field , 2010, Advanced materials.

[130]  J. Vigneron,et al.  Contribution of both the upperside and the underside of the wing on the iridescence in the male butterfly Troïdes magellanus (Papilionidae) , 2012 .

[131]  Lei Jiang,et al.  Bioinspired colloidal photonic crystals with controllable wettability. , 2011, Accounts of chemical research.

[132]  Augustine Urbas,et al.  Tunable Block Copolymer/Homopolymer Photonic Crystals , 2000 .

[133]  Joanna Aizenberg,et al.  Patterning hierarchy in direct and inverse opal crystals. , 2012, Small.

[134]  Andreas Stein,et al.  Colloidal photonic crystal pigments with low angle dependence. , 2010, ACS applied materials & interfaces.

[135]  Su Chen,et al.  Facile fabrication of tunable colloidal photonic crystal hydrogel supraballs toward a colorimetric humidity sensor , 2013 .

[136]  Xiang‐Yang Liu,et al.  Mysterious coloring: structural origin of color mixing for two breeds of Papilio butterflies. , 2011, Optics express.

[137]  Seung-Man Yang,et al.  Colloidal Photonic Crystals toward Structural Color Palettes for Security Materials , 2013 .

[138]  M. MacLachlan,et al.  Tunable Mesoporous Bilayer Photonic Resins with Chiral Nematic Structures and Actuator Properties , 2014, Advanced materials.

[139]  Edwin L. Thomas,et al.  Periodic materials and interference lithography , 2008 .

[140]  H. Hölscher,et al.  Fabrication of hierarchical photonic nanostructures inspired by Morpho butterflies utilizing laser interference lithography , 2015 .

[141]  C. Botta,et al.  Structural iridescent tuned colors from self-assembled polymer opal surfaces. , 2012, ACS applied materials & interfaces.

[142]  T. Bein,et al.  Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. , 2014, Journal of the American Chemical Society.

[143]  Jian Tang,et al.  Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures , 2012 .

[144]  Yuji Kuwahara,et al.  Optimization of reproduced Morpho-blue coloration , 2007, SPIE Optics East.

[145]  F. J. López-Alcaraz,et al.  Photonic Crystals from Ordered Mesoporous Thin‐Film Functional Building Blocks , 2007 .

[146]  T. Deng,et al.  Two-dimensional block copolymer photonic crystals , 2003 .

[147]  Mohan Srinivasarao,et al.  Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles , 2009, Science.

[148]  Andrew R. Parker,et al.  Natural photonic engineers , 2002 .

[149]  Yangcheng Lu,et al.  Extraction-Derived Self-Organization of Colloidal Photonic Crystal Particles within Confining Aqueous Droplets , 2013 .

[150]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[151]  M. Gallei,et al.  Thermo-cross-linked elastomeric opal films. , 2013, ACS applied materials & interfaces.

[152]  Lei Jiang,et al.  Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[153]  J. T. Bagnara,et al.  On the blue coloration of vertebrates. , 2007, Pigment cell research.

[154]  Mecit Yaman,et al.  Arrays of indefinitely long uniform nanowires and nanotubes. , 2011, Nature materials.

[155]  Jeremy J. Baumberg,et al.  Modification of the refractive-index contrast in polymer opal films , 2011 .

[156]  Hong Yee Low,et al.  Mimicking domino-like photonic nanostructures on butterfly wings. , 2009, Small.

[157]  Jing Zhang,et al.  Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. , 2015, Angewandte Chemie.

[158]  K. Clays,et al.  A facile way to introduce planar defects into colloidal photonic crystals for pronounced passbands , 2014 .

[159]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[160]  Rongrong Hu,et al.  A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. , 2015, Physical chemistry chemical physics : PCCP.

[161]  J. Aizenberg,et al.  Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers , 2013, Advanced materials.

[162]  H. Macleod,et al.  Thin-Film Optical Filters, Fourth Edition , 2010 .

[163]  Benny Hallam,et al.  Brilliant Whiteness in Ultrathin Beetle Scales , 2007, Science.

[164]  Akira Fujishima,et al.  Structural color and the lotus effect. , 2003, Angewandte Chemie.

[165]  Hl. de Vries Rotatory power and other optical properties of certain liquid crystals , 1951 .

[166]  Franziska Schenk,et al.  Nature’s Fluctuating Colour Captured On Canvas? , 2010 .

[167]  Akira Saito,et al.  Material design and structural color inspired by biomimetic approach , 2011, Science and technology of advanced materials.

[168]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[169]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[170]  Zhaokun Yang,et al.  Co-deposition motif for constructing inverse opal photonic crystals with pH sensing , 2015 .

[171]  H. Lekkerkerker,et al.  Liquid crystal phase transitions in suspensions of polydisperse plate-like particles , 2000, Nature.

[172]  Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition , 2001 .

[173]  Jeremy J. Baumberg,et al.  Compact strain-sensitive flexible photonic crystals for sensors , 2005 .

[174]  M. Madou Fundamentals of microfabrication and nanotechnology , 2012 .

[175]  T. Caro The Adaptive Significance of Coloration in Mammals , 2005 .

[176]  Joanna Aizenberg,et al.  Three-Phase Co-assembly: In Situ Incorporation of Nanoparticles into Tunable, Highly Ordered, Porous Silica Films , 2014 .

[177]  Xin Wang,et al.  Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. , 2015, Angewandte Chemie.

[178]  H. Nishihara,et al.  Production of colored pigments with amorphous arrays of black and white colloidal particles. , 2013, Angewandte Chemie.

[179]  H. Fuess,,et al.  Characterization of Pearl Luster Pigments , 2005 .

[180]  Jean-Pol Vigneron,et al.  Additive photonic colors in the Brazilian diamond weevil: entimus imperialis , 2012, Other Conferences.

[181]  Hao Zhang,et al.  Bioinspired Water‐Vapor‐Responsive Organic/Inorganic Hybrid One‐Dimensional Photonic Crystals with Tunable Full‐Color Stop Band , 2010 .

[182]  Gunnar Westman,et al.  Cationic surface functionalization of cellulose nanocrystals , 2008 .

[183]  Seung-Man Yang,et al.  Microwave-assisted self-organization of colloidal particles in confining aqueous droplets. , 2006, Journal of the American Chemical Society.

[184]  Jeremy J. Baumberg,et al.  Polymer opals as novel photonic materials , 2013 .

[185]  Gary Cook,et al.  Exact replication of biological structures by chemical vapor deposition of silica. , 2003, Angewandte Chemie.

[186]  M. Shawkey,et al.  Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles. , 2015, ACS nano.

[187]  W. Shi,et al.  Strucutural Color Bio-Engineering by Replicating Morpho Wings , 2011 .

[188]  木下 修一,et al.  Structural colors in the realm of nature , 2008 .

[189]  S. Mark Spearing,et al.  An assessment of the process capabilities of nanoimprint lithography , 2008 .

[190]  O. Wolfbeis,et al.  Photonic crystals for chemical sensing and biosensing. , 2014, Angewandte Chemie.

[191]  Shin‐Hyun Kim,et al.  Colloidal assembly in Leidenfrost drops for noniridescent structural color pigments. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[192]  Jin-Gyu Park,et al.  Disordered packings of core-shell particles with angle-independent structural colors , 2012 .

[193]  Thermochromic polymer opals , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[194]  G. Guan,et al.  The continuous fabrication of mechanochromic fibers , 2016 .

[195]  R. Maia,et al.  Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin , 2009, Journal of The Royal Society Interface.

[196]  Yanhong Luo,et al.  Optical studies of random disorder of colloidal photonic crystals and its evolution in evaporation induced self-assembly. , 2012, The Journal of chemical physics.

[197]  Hui Wang,et al.  Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors , 2013, Sensors.

[198]  Michael H. Bartl,et al.  Photonic Structures in Biology: A Possible Blueprint for Nanotechnology , 2014 .

[199]  Qixin Guo,et al.  Morphosynthesis of hierarchical ZnO replica using butterfly wing scales as templates , 2006 .

[200]  A. Richards,et al.  An Electron Microscope Study of Some Structural Colors of Insects , 1942 .

[201]  D. Janzen,et al.  Stable structural color patterns displayed on transparent insect wings , 2011, Proceedings of the National Academy of Sciences.

[202]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[203]  J. Baumberg,et al.  Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting , 2014, Small.

[204]  Danzhen Li,et al.  Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes , 2013 .

[205]  J. Anta,et al.  Photoconducting Bragg Mirrors based on TiO2 Nanoparticle Multilayers , 2008 .

[206]  Y. Vlasov,et al.  Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic band gap effects , 1995 .

[207]  E. Dufresne,et al.  Development of colour-producing β-keratin nanostructures in avian feather barbs , 2009, Journal of The Royal Society Interface.

[208]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[209]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[210]  Lei Jiang,et al.  Fabrication of large-area patterned photonic crystals by ink-jet printing , 2009 .

[211]  Jongseung Yoon,et al.  Large-Area Block Copolymer Photonic Gel Films with Solvent-Evaporation-Induced Red- and Blue-Shift Reflective Bands , 2015 .

[212]  Jintao Zhu,et al.  Highly Sensitive Mechanochromic Photonic Hydrogels with Fast Reversibility and Mechanical Stability. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[213]  Timothy P. Lodge,et al.  Block Copolymers: Past Successes and Future Challenges , 2003 .

[214]  Kuniaki Nagayama,et al.  Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces , 1996 .

[215]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[216]  M. Srinivasarao Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths. , 1999, Chemical reviews.

[217]  Unyong Jeong,et al.  Structural Color Painting by Rubbing Particle Powder , 2015, Scientific Reports.

[218]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[219]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[220]  Jun Li,et al.  Bio-inspired thermal-responsive inverse opal films with dual structural colors based on liquid crystal elastomer , 2015 .

[221]  Guillaume Gomard,et al.  The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly , 2015, Nature Communications.

[222]  R. Corkery,et al.  Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. , 2011, Chemical communications.

[223]  M. Galli,et al.  Band structure and optical properties of opal photonic crystals , 2005, cond-mat/0505068.

[224]  Di Zhang,et al.  Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors , 2010 .

[225]  Yifang Chen,et al.  Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers , 2015, Scientific Reports.

[226]  Jie Wang,et al.  Microfluidic synthesis of barcode particles for multiplex assays. , 2015, Small.

[227]  Manuel Schaffner,et al.  Combining Bottom-Up Self-Assembly with Top-Down Microfabrication to Create Hierarchical Inverse Opals with High Structural Order. , 2015, Small.

[228]  J. Baumberg,et al.  Stamping colloidal photonic crystals: a facile way towards complex pixel colour patterns for sensing and displays. , 2015, Nanoscale.

[229]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[230]  James D. Rancourt,et al.  Optical thin films. User's handbook , 1987 .

[231]  Paul V. Braun,et al.  Materials science: Colour without colourants , 2011, Nature.

[232]  Su Yeon Lee,et al.  Elastoplastic Inverse Opals as Power‐Free Mechanochromic Sensors for Force Recording , 2015 .

[233]  M F Land,et al.  The physics and biology of animal reflectors. , 1972, Progress in biophysics and molecular biology.

[234]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[235]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[236]  J. Aizenberg,et al.  Tunable Anisotropy in Inverse Opals and Emerging Optical Properties , 2014 .

[237]  Joanna Aizenberg,et al.  Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies , 2015, Proceedings of the National Academy of Sciences.

[238]  A. Tok,et al.  TiO2 inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications , 2011 .

[239]  Jialei Bai,et al.  A novel opal closest-packing photonic crystal for naked-eye glucose detection. , 2014, Small.

[240]  Hiroshi Fudouzi,et al.  Flexible Polymer Colloidal‐Crystal Lasers with a Light‐Emitting Planar Defect , 2007 .

[241]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[242]  Tatsuro Endo,et al.  ナノインプリントリソグラフィを用いたポリマー製二次元フォトニック結晶の作製と化学センサへの応用;ナノインプリントリソグラフィを用いたポリマー製二次元フォトニック結晶の作製と化学センサへの応用;Fabrication of Polymer-based Two-dimensional Photonic Crystal for Chemical Sensor Application , 2016 .

[243]  M. Galetti,et al.  Frugivory on Margaritaria nobilis L.f. (Euphorbiaceae): poor investment and mimetism , 2008 .

[244]  Hongzhi Wang,et al.  Facile fabrication of a magnetically induced structurally colored fiber and its strain-responsive properties , 2015 .

[245]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[246]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[247]  H. Herzig,et al.  Microlenses on Bragg Reflectors to Create Iridescent Colors , 2008 .

[248]  J. Aizenberg,et al.  Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments. , 2014, Optics Express.

[249]  Howon Lee,et al.  SUPPLEMENTARY INFORMATION Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal , 2009 .

[250]  Steven E. Kooi,et al.  Vapor Deposition of Hybrid Organic–Inorganic Dielectric Bragg Mirrors having Rapid and Reversibly Tunable Optical Reflectance , 2008 .

[251]  Jae-Hwang Lee,et al.  Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange. , 2012, ACS nano.

[252]  D. Sun-Waterhouse,et al.  Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2 , 2013, Scientific Reports.

[253]  Akira Saito,et al.  Morpho-blue reproduced by nanocasting lithography , 2006, SPIE Optics + Photonics.

[254]  Teh-Hwa Wong,et al.  Color generation in butterfly wings and fabrication of such structures. , 2003, Optics letters.

[255]  Khairudin Mohamed,et al.  A review of roll-to-roll nanoimprint lithography , 2014, Nanoscale Research Letters.

[256]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[257]  W. Lu,et al.  Responsive photonic crystal for the sensing of environmental pollutants , 2014 .

[258]  J. Baumberg,et al.  Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures , 2015 .

[259]  A. Parker,et al.  Dual gratings interspersed on a single butterfly scale , 2008, Journal of The Royal Society Interface.

[260]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[261]  Werayut Srituravanich,et al.  Review on Micro- and Nanolithography Techniques and Their Applications , 2012 .

[262]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[263]  A. Parker,et al.  Natural photonics for industrial inspiration , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[264]  Osamu Sato,et al.  Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. , 2009, Accounts of chemical research.

[265]  Mingsheng Wang,et al.  Magnetic assembly route to colloidal responsive photonic nanostructures. , 2012, Accounts of chemical research.

[266]  Akhlesh Lakhtakia,et al.  Structural colors, cosmetics, and fabrics , 2009, NanoScience + Engineering.

[267]  Roger T Hanlon,et al.  Mechanisms and behavioural functions of structural coloration in cephalopods , 2009, Journal of The Royal Society Interface.

[268]  D. J. Norris,et al.  Avoiding cracks in self-assembled photonic band-gap crystals , 2004 .

[269]  Zhiguang Guo,et al.  Biomimetic photonic materials with tunable structural colors. , 2013, Journal of colloid and interface science.

[270]  Mark P. Andrews,et al.  Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films , 2013 .

[271]  Jin Hwan Park,et al.  Effect of substrate on the phase transformation of TiO2 in pearlescent pigment , 2008 .

[272]  P. Vukusic,et al.  Photonic crystal fiber in the polychaete worm Pherusa sp. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.