Point sets with optimal order of extreme and periodic discrepancy
暂无分享,去创建一个
[1] Josef Dick,et al. On the mean square weighted L2 discrepancy of randomized digital nets in prime base , 2006, J. Complex..
[2] The diaphony and the star-diaphony of some two-dimensional sequences , 2000 .
[3] Aicke Hinrichs,et al. Proof techniques in quasi-Monte Carlo theory , 2014, J. Complex..
[4] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[5] Peter Kritzer,et al. Uniform Distribution and Quasi-Monte Carlo Methods - Discrepancy, Integration and Applications , 2014, Uniform Distribution and Quasi-Monte Carlo Methods.
[6] A. Hinrichs,et al. Extreme and periodic $L_2$ discrepancy of plane point sets , 2020, 2005.09933.
[7] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[8] Vsevolod F. Lev. On two versions ofL2-discrepancy and geometrical interpretation of diaphony , 1995 .
[9] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[10] Ya.M. Zhileikii,et al. Quadrature formulae on classes of functions , 1968 .
[11] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[12] F. Pillichshammer,et al. Digital nets in dimension two with the optimal order of L_p discrepancy , 2018, Journal de Théorie des Nombres de Bordeaux.
[13] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[14] A. Hinrichs,et al. Optimal Lp-discrepancy bounds for second order digital sequences , 2016, 1601.07281.
[15] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[16] Robert F. Tichy,et al. Sequences, Discrepancies and Applications , 1997 .
[17] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[18] V. Lev. The exact order of generalized diaphony and multidimensional numerical integration , 1999, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[19] Aicke Hinrichs,et al. Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives , 2014, MCQMC.
[20] Peter Kritzer,et al. An exact formula for the L_2 discrepancy of the shifted Hammersley point set , 2006 .
[21] On the mean square weighted L 2 discrepancy of randomized digital ( t , m , s )-nets over Z , 2022 .
[22] A. Hinrichs,et al. Optimal order of $L_p$-discrepancy of digit shifted Hammersley point sets in dimension 2 , 2014, 1410.4315.
[23] M. Skriganov. Harmonic analysis on totally disconnected groups and irregularities of point distributions , 2006 .
[24] Lev Markhasin. $L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets , 2014, 1402.4424.
[25] Josef Dick,et al. Explicit constructions of point sets and sequences with low discrepancy , 2013, Uniform Distribution and Quasi-Monte Carlo Methods.
[26] Ralph Kritzinger. Finding exact formulas for the $L_2$ discrepancy of digital $(0,n,2)$-nets via Haar functions , 2017, Acta Arithmetica.