X-ray topographic study of Bridgman-grown CdZnTeSe

[1]  U. Roy,et al.  Characterization of large-volume Frisch grid detector fabricated from as-grown CdZnTeSe , 2019 .

[2]  U. Roy,et al.  High-resolution virtual Frisch grid gamma-ray detectors based on as-grown CdZnTeSe with reduced defects , 2019, Applied Physics Letters.

[3]  Jae Sung Lee,et al.  Advances in imaging instrumentation for nuclear cardiology , 2019, Journal of Nuclear Cardiology.

[4]  U. Roy,et al.  Direct observation of influence of secondary-phase defects on CZT detector response , 2017 .

[5]  G. Geronimo,et al.  CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm , 2016 .

[6]  U. Roy,et al.  Evaluation of CdTexSe1−x crystals grown from a Te-rich solution , 2014 .

[7]  Aleksey E. Bolotnikov,et al.  Growth of CdTexSe1-x from a Te-rich solution for applications in radiation detection , 2014 .

[8]  Arnold Burger,et al.  Growth of CdZnTe crystals by the traveling heater method , 2013 .

[9]  Aleksey E. Bolotnikov,et al.  Post-growth thermal annealing study of CdZnTe for developing room-temperature X-ray and gamma-ray detectors , 2013 .

[10]  R. James,et al.  Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors , 2013 .

[11]  C. K. Egan,et al.  Characterisation of vapour grown CdZnTe crystals using synchrotron X-ray topography , 2012 .

[12]  R. James,et al.  Crystal Defects in CdZnTe Crystals Grown by the Modified Low-Pressure Bridgman Method , 2012, IEEE Transactions on Nuclear Science.

[13]  R. James,et al.  Correlations Between Crystal Defects and Performance of CdZnTe Detectors , 2011, IEEE Transactions on Nuclear Science.

[14]  Aleksey E. Bolotnikov,et al.  Extended Defects in CdZnTe Crystals: Effects on Device Performance , 2010 .

[15]  Dongmei Zeng,et al.  Transmission electron microscopy observations of twin boundaries and sub-boundary networks in bulk CdZnTe crystals , 2009 .

[16]  I. J. Nakonechnyj,et al.  Extended Defects in CdZnTe Radiation Detectors , 2009, IEEE Transactions on Nuclear Science.

[17]  Balaji Raghothamachar,et al.  Crystal growth and characterization of CdTe grown by vertical gradient freeze , 2008 .

[18]  R. James,et al.  Effects of Te Inclusions on the Performance of CdZnTe Radiation Detectors , 2007, IEEE Transactions on Nuclear Science.

[19]  Aleksey E. Bolotnikov,et al.  High-resolution X-ray mapping of CdZnTe detectors , 2007 .

[20]  M. Dudley,et al.  The effect of the wall contact and post-growth cool-down on defects in CdTe crystals grown by 'contactless' physical vapour transport , 2003 .

[21]  P. Luke,et al.  Electron trapping nonuniformity in high-pressure-Bridgman-grown CdZnTe , 2002 .

[22]  Tuviah E. Schlesinger,et al.  Cadmium zinc telluride and its use as a nuclear radiation detector material , 2001 .

[23]  Klaus-Werner Benz,et al.  Comparison of CdTe, Cd0.9Zn0.1Te and CdTe0.9Se0.1 crystals: application for γ- and X-ray detectors , 1994 .

[24]  P. Rudolph Fundamental studies on Bridgman growth of CdTe , 1994 .

[25]  S. Seto,et al.  Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe , 1989 .