Manipulating multiqudit entanglement witnesses by using linear programming

A class of entanglement witnesses (EWs) called reduction-type entanglement witnesses is introduced, which can detect some multipartite entangled states including positive partial transpose ones with Hilbert space of dimension d{sub 1}(multiply-in-circle sign)d{sub 2}(multiply-in-circle sign){center_dot}{center_dot}{center_dot}(multiply-in-circle sign)d{sub n}. In fact the feasible regions of these EWs turn out to be convex polygons and hence the manipulation of them reduces to linear programming which can be solved exactly by using the simplex method. The decomposability and nondecomposability of these EWs are studied and it is shown that it has a close connection with eigenvalues and optimality of EWs. Also using the Jamiolkowski isomorphism, the corresponding possible positive maps, including the generalized reduction maps of Hall [Phys. Rev. A 72, 022311 (2005)] are obtained.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  J. Eisert,et al.  Complete hierarchies of efficient approximations to problems in entanglement theory , 2004 .

[3]  J. Poizat,et al.  Quantum noise of laser diodes , 2000 .

[4]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[5]  Dirk Bouwmeester,et al.  The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.

[6]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[7]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[8]  Bell-state diagonal-entanglement witnesses , 2005, quant-ph/0507035.

[9]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[10]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[11]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[12]  A. Doherty,et al.  Distillability of Werner states using entanglement witnesses and robust semidefinite programs , 2006, quant-ph/0608095.

[13]  J. Cirac,et al.  Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.

[14]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[15]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[16]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[17]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[18]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[19]  J. Cirac,et al.  Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[22]  M. A. Jafarizadeh,et al.  Generalized qudit Choi maps , 2006 .

[23]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[24]  William Hall Multipartite reduction criteria for separability , 2005 .

[25]  P. Parrilo,et al.  Detecting multipartite entanglement , 2004, quant-ph/0407143.

[26]  M. Horodecki,et al.  Mixed-State Entanglement and Quantum Communication , 2001, quant-ph/0109124.