A forward semi-Lagrangian method for the numerical solution of the Vlasov equation
暂无分享,去创建一个
Eric Sonnendrücker | Nicolas Crouseilles | Thomas Respaud | E. Sonnendrücker | N. Crouseilles | Thomas Respaud
[1] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[2] M. Kruskal,et al. Exact Nonlinear Plasma Oscillations , 1957 .
[3] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[4] Laurent Villard,et al. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation , 2006, J. Comput. Phys..
[5] Réal R. J. Gagné,et al. Nonlinear behavior of a monochromatic wave in a one‐dimensional Vlasov plasma , 1978 .
[6] Burton D. Fried,et al. The Plasma Dispersion Function , 1961 .
[7] Magdi Shoucri,et al. A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator , 1996 .
[8] M. Shoucri. Nonlinear evolution of the bump‐on‐tail instability , 1979 .
[9] Magdi Shoucri,et al. Integration of the Vlasov equation along characteristics in one and two dimensions , 2003 .
[11] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[12] Jacques Denavit,et al. Numerical simulation of plasmas with periodic smoothing in phase space , 1972 .
[13] Nigel Wood,et al. The Parabolic Spline Method (PSM) for conservative transport problems , 2006 .
[14] Régine Barthelmé,et al. Conservation de la charge dans les codes PIC , 2005 .
[15] Srinath Vadlamani,et al. The particle-continuum method: an algorithmic unification of particle-in-cell and continuum methods , 2004, Comput. Phys. Commun..
[16] P. H. Sakanaka,et al. Formation of Ion‐Acoustic Collisionless Shocks , 1971 .
[17] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[18] Jeffrey S. Scroggs,et al. A forward-trajectory global semi-Lagrangian transport scheme , 2003 .
[19] Sebastian Reich,et al. An explicit and conservative remapping strategy for semi‐Lagrangian advection , 2007 .
[20] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[21] Nicolas Besse,et al. Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..
[22] Giovanni Manfredi,et al. Long-Time Behavior of Nonlinear Landau Damping , 1997 .
[23] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[24] Glenn Joyce,et al. Fourth-order poisson solver for the simulation of bounded plasmas , 1980 .
[25] José A. Carrillo,et al. Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..
[26] Nigel Wood,et al. A monotonic and positive–definite filter for a Semi‐Lagrangian Inherently Conserving and Efficient (SLICE) scheme , 2005 .
[27] N Singh,et al. Computer experiments on the formation and dynamics of electric double layers , 1980 .
[28] Buchanan,et al. Nonlinear electrostatic waves in collisionless plasmas. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[29] John D. Villasenor,et al. Rigorous charge conservation for local electromagnetic field solvers , 1992 .
[30] S. Reich,et al. The remapped particle‐mesh semi‐Lagrangian advection scheme , 2006, physics/0607243.
[31] Magdi Shoucri. A two-level implicit scheme for the numerical solution of the linearized vorticity equation , 1981 .
[32] Régine Barthelmé. Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell , 2005 .
[33] Nate Orlow,et al. Hill ’ s Equation , 2010 .
[34] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .