The equitable location problem on the plane

This paper considers the problem of locating M facilities on the unit square so as to minimize the maximal demand faced by each facility subject to closest assignments and coverage constraints. Focusing on uniform demand over the unit square, we develop upper and lower bounds on feasibility of the problem for a given number of facilities and coverage radius. Based on these bounds and numerical experiments we suggest a heuristic to solve the problem. Our computational results show that the heuristic is very efficient, as the average gap between its solutions and the lower bound is 4.34%.