Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: Optimization and field measurements

Abstract The scope for using a zeolite NH 4 -Y modified carbon paste electrode (ZYMCPE) in the voltammetric detection of Cd 2+ and Pb 2+ ions in ground water resources and industrial effluents is examined. The experimental conditions with respect to zeolite to graphite ratio in the electrode preparation, preconcentration time and electrolyte are optimized to maximize the sensitivity of the measurement. The detection limits are 1.0 μg L −1 for Cd 2+ ion and 3.6 μg L −1 for Pb 2+ ion. The excellent reproducibility of results obtained in the present study offers the possibility to develop commercial voltammetric sensors based on ZYMCPE for the two ions. The analytical results for two real samples (ground water and industrial effluent) agree very well with those obtained by atomic absorption spectroscopy.

[1]  J. Zen,et al.  Voltammetric behavior and trace determination of Pb2+ at a mercury-free screen-printed silver electrode , 2002 .

[2]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[3]  W. Shan,et al.  Fabrication of ultrathin nanozeolite film modified electrodes and their electrochemical behavior , 2003 .

[4]  J. G. Ibanez,et al.  Metals in alcoholic beverages: A review of sources, effects, concentrations, removal, speciation, and analysis , 2008 .

[5]  B. Wichterlová,et al.  Co2+ ion siting in pentasil-containing zeolites, part 3. , 2000 .

[6]  Phillip Carson,et al.  Hazardous Chemicals Handbook , 1994 .

[7]  D Brynn Hibbert,et al.  Voltammetric detection of cadmium ions at glutathione-modified gold electrodes. , 2005, The Analyst.

[8]  P. Bartlett,et al.  A study of the preconcentration and stripping voltammetry of Pb(II) at carbon electrodes , 2000 .

[9]  A. Walcarius,et al.  Voltammetric response of the hexammino-ruthenium complex incorporated in zeolite-modified carbon paste electrode , 1997 .

[10]  Shengshui Hu,et al.  Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes , 2003 .

[11]  Gyoung Hwa Jeong,et al.  Single crystal structure of fully dehydrated, excessively Cd2+-exchanged zeolite Y, ∣Cd27.5(Cd8O4)2∣[Si121Al71O384]-FAU, containing Cd8O48+ clusters , 2006 .

[12]  Frank C. Walsh,et al.  Reticulated vitreous carbon as an electrode material , 2004 .

[13]  H. Lüth,et al.  Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions , 2001 .

[14]  A. Sanz-Medel Toxic trace metal speciation: importance and tools for environmental and biological analysis , 1998 .

[15]  Joseph Wang,et al.  Electrochemical sensors for environmental monitoring: design, development and applications. , 2004, Journal of environmental monitoring : JEM.

[16]  M. Shamsipur,et al.  Cadmium(II)-selective membrane electrode based on a synthesized tetrol compound , 2000 .

[17]  A. Srivastava,et al.  Voltammetric Determination of Lead at Chemically Modified Electrodes Based on Crown Ethers , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[18]  F. Henn,et al.  Localization of Water Molecules and Sodium Ions in Na-Mordenite, by Thermally Stimulated Current Measurement , 2001 .

[19]  P. Patnaik,et al.  Dean's Analytical Chemistry Handbook , 2004 .

[20]  Jianbo Jia,et al.  Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes , 2008 .

[21]  W. Kutner,et al.  Analytical aspects of chemically modified electrodes: Classification, critical evaluation and recommendations (IUPAC Recommendations 1998) , 1998 .

[22]  Jyh-Myng Zen,et al.  Recent Updates of Chemically Modified Electrodes in Analytical Chemistry , 2003 .

[23]  D. Rolison,et al.  Analytical implications of zeolites in overlayers at electrodes. , 1991, Talanta.

[24]  G. Wallace,et al.  Designing chemically modified electrodes for electroanalysis , 1988 .

[25]  Anastasios Economou,et al.  A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. , 2004, The Analyst.

[26]  Yuehe Lin,et al.  Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). , 2003, The Analyst.

[27]  S. Stanković,et al.  Determination of Pb and Cd in water by potentiometric stripping analysis (PSA) , 2007 .

[28]  D. Cui,et al.  Voltammetric determination of cadmium(II) using a chemically modified electrode , 2001, Fresenius' journal of analytical chemistry.

[29]  M. Montes-Bayón,et al.  Elemental speciation studies--new directions for trace metal analysis. , 2003, Ecotoxicology and environmental safety.

[30]  K. Vytras,et al.  Carbon Paste Electrodes in Modern Electroanalysis , 2001 .

[31]  Ioannis Raptis,et al.  Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry , 2008 .

[32]  Caroline B. Ahlers,et al.  Voltammetric behavior of zeolite-modified electrodes fabricated by electrophoretic deposition , 2000 .

[33]  Jean-Michel Kauffmann,et al.  Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990–1993 , 1995 .

[34]  A. Zarbin,et al.  Template carbon dispersed in polyaniline matrix electrodes: evaluation and application as electrochemical sensors to low concentrations of Cu2+ and Pb2+ , 2003 .

[35]  C. Lanczycki,et al.  Voltammetric Response of Zeolite‐Modified Electrodes , 1988 .

[36]  A. Mostafavi,et al.  Natural analcime zeolite modified with 5-Br-PADAP for the preconcentration and anodic stripping voltammetric determination of trace amount of cadmium. , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[37]  A. Walcarius,et al.  Factors affecting the analytical applications of zeolite-modified electrodes preconcentration of electroactive species , 1997 .

[38]  B. Hattendorf,et al.  Potentiometric polymeric membrane electrodes for measurement of environmental samples at trace levels: new requirements for selectivities and measuring protocols, and comparison with ICPMS. , 2001, Analytical chemistry.

[39]  W. Mortier,et al.  Cation Site Energies in High-silica FAU-type Zeolites , 1992 .

[40]  P. Leflaive,et al.  Extraframework cation distributions in X and Y faujasite zeolites: A review , 2008 .

[41]  A. Walcarius,et al.  Screen-printed zeolite-modified carbon electrodes , 1999 .

[42]  Ernö Pretsch,et al.  Potentiometric sensors for trace-level analysis. , 2005, Trends in analytical chemistry : TRAC.

[43]  R. Dryfe,et al.  Potentiometric sensing of heavy metal ions using a novel zeolite Y membrane , 2006 .

[44]  K. Seff,et al.  CRYSTAL STRUCTURE OF ZEOLITE X EXCHANGED WITH PB(II) AT PH 6.0 AND DEHYDRATED : (PB4+)14(PB2+)18(PB4O4)8SI100AL92O384 , 1997 .

[45]  P. Haddad,et al.  The determination of trace metal pollutants in environmental matrices using ion chromatography. , 2004, Environment international.

[46]  Shengshui Hu,et al.  Simultaneous determination of cadmium (II) and lead (II) with clay nanoparticles and anthraquinone complexly modified glassy carbon electrode. , 2004, Talanta.

[47]  Alain Walcarius,et al.  Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50‐Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis , 2009 .

[48]  J. Justin Gooding,et al.  His–Ser–Gln–Lys–Val–Phe as a selective ligand for the voltammetric determination of Cd2+ , 2005 .

[49]  V. Gupta,et al.  Dicyclohexano-18-Crown-6 as Active Material in PVC Matrix Membrane for the Fabrication of Cadmium Selective Potentiometric Sensor (Proceedings of The 5Th East Asian Conference on Chemical Sensors: The 33RD Chemical Sensor Symposium) , 2001 .

[50]  C. Bing,et al.  Accumulation and voltammetric determination of complexed metal ions at zeolite-modified sensor electrodes. , 1996, Talanta.

[51]  A. Zapardiel,et al.  Direct determination of lead by bioaccumulation at a moss-modified carbon paste electrode , 1993 .

[52]  E. Choi,et al.  Crystal Structure of a Cadmium Sorption Complex of Dehydrated Fully Cd2+-Exchanged Zeolite X Containing Cd2+, Cd+, and Cd0 , 2002 .

[53]  E. Liu,et al.  Stripping Voltammetric Analysis of Heavy Metals at Nitrogen Doped Diamond‐Like Carbon Film Electrodes , 2002 .

[54]  Hongyuan Chen,et al.  In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly(dimethylsiloxane) microchip. , 2007, Talanta.

[55]  Giuseppe Palleschi,et al.  Carbon Paste Electrode Bulk-Modified with the Conducting Polymer Poly(1,8-Diaminonaphthalene): Application to Lead Determination , 2003 .

[56]  J. Zhang,et al.  Silver ion exchanged zeolite modified electrodes : observation of electrochemically distinct silver ions , 1990 .

[57]  Jacques Buffle,et al.  Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measureme , 2005 .

[58]  Peter C. Hauser,et al.  Trace-metal analysis with separation methods , 2005 .

[59]  L. Campanella,et al.  Suitable ion-selective sensors for lead and cadmium analysis , 1992 .

[60]  G. Calzaferri,et al.  Silver-Zeolite-Modified Electrodes: An Intrazeolite Electron Transport Mechanism , 1995 .

[61]  M. Pumera,et al.  Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. , 2005, The Analyst.

[62]  Jiujun Zhang,et al.  Graphite electrodes modified by 8-hydroxyquinolines and its application for the determination of copper in trace levels , 2006 .

[63]  Adrian W. Bott,et al.  Voltammetric Determination of Trace Concentrations of Metals in the Environment , 1995 .

[64]  Prabir K. Dutta,et al.  Handbook of Zeolite Science and Technology , 2003 .