Non-reversible Markov chain Monte Carlo for sampling of districting maps

Evaluating the degree of partisan districting (Gerrymandering) in a statistical framework typically requires an ensemble of districting plans which are drawn from a prescribed probability distribution that adheres to a realistic and non-partisan criteria. In this article we introduce novel non-reversible Markov chain Monte-Carlo (MCMC) methods for the sampling of such districting plans which have improved mixing properties in comparison to previously used (reversible) MCMC algorithms. In doing so we extend the current framework for construction of non-reversible Markov chains on discrete sampling spaces by considering a generalization of skew detailed balance. We provide a detailed description of the proposed algorithms and evaluate their performance in numerical experiments.

[1]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[2]  Jonathan C. Mattingly,et al.  A Merge-Split Proposal for Reversible Monte Carlo Markov Chain Sampling of Redistricting Plans , 2019, ArXiv.

[3]  Marija Vucelja Lifting -- A nonreversible Markov chain Monte Carlo Algorithm , 2014 .

[4]  P. Dobson,et al.  Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems , 2019, Computational Geosciences.

[5]  Lei Wu,et al.  Irreversible samplers from jump and continuous Markov processes , 2016, Stat. Comput..

[6]  Justin Solomon,et al.  Recombination: A family of Markov chains for redistricting , 2019, ArXiv.

[7]  G. Pavliotis,et al.  Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation , 2017, 1701.04247.

[8]  G. Pavliotis,et al.  Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.

[9]  M. Michel,et al.  Irreversible Markov chains by the factorized Metropolis filter : algorithms and applications in particle systems and spin models , 2016 .

[10]  Yi Sun,et al.  Improving the Asymptotic Performance of Markov Chain Monte-Carlo by Inserting Vortices , 2010, NIPS.

[11]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[12]  Kosuke Imai,et al.  A New Automated Redistricting Simulator Using Markov Chain , 2014 .

[13]  Kosuke Imai,et al.  Automated Redistricting Simulation Using Markov Chain Monte Carlo , 2020, Journal of Computational and Graphical Statistics.

[14]  P. Fearnhead,et al.  The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.

[15]  Michael Chertkov,et al.  Irreversible Monte Carlo Algorithms for Efficient Sampling , 2008, ArXiv.

[16]  Jonathan C. Mattingly,et al.  Evaluating Partisan Gerrymandering in Wisconsin , 2017, 1709.01596.

[17]  Jonathan C. Mattingly,et al.  Redistricting: Drawing the Line , 2017, 1704.03360.

[18]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[19]  A. Doucet,et al.  The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.

[20]  Justin Solomon,et al.  Complexity and Geometry of Sampling Connected Graph Partitions , 2019, ArXiv.

[21]  General Construction of Irreversible Kernel in Markov Chain Monte Carlo , 2012, 1207.0258.

[22]  J. Mattingly,et al.  Redistricting and the Will of the People , 2014, 1410.8796.

[23]  N. Pillai,et al.  A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.

[24]  Jonathan C. Mattingly,et al.  Quantifying Gerrymandering in North Carolina , 2018, Statistics and Public Policy.

[25]  Nawaf Bou-Rabee,et al.  A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..

[26]  K. Hukushima,et al.  An irreversible Markov-chain Monte Carlo method with skew detailed balance conditions , 2013 .

[27]  Radford M. Neal Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.