Non-reversible Markov chain Monte Carlo for sampling of districting maps
暂无分享,去创建一个
Jonathan C. Mattingly | Matthias Sachs | Gregory Herschlag | Evan Wyse | Evan T. Wyse | J. Mattingly | Matthias Sachs | G. Herschlag
[1] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[2] Jonathan C. Mattingly,et al. A Merge-Split Proposal for Reversible Monte Carlo Markov Chain Sampling of Redistricting Plans , 2019, ArXiv.
[3] Marija Vucelja. Lifting -- A nonreversible Markov chain Monte Carlo Algorithm , 2014 .
[4] P. Dobson,et al. Reversible and non-reversible Markov chain Monte Carlo algorithms for reservoir simulation problems , 2019, Computational Geosciences.
[5] Lei Wu,et al. Irreversible samplers from jump and continuous Markov processes , 2016, Stat. Comput..
[6] Justin Solomon,et al. Recombination: A family of Markov chains for redistricting , 2019, ArXiv.
[7] G. Pavliotis,et al. Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation , 2017, 1701.04247.
[8] G. Pavliotis,et al. Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.
[9] M. Michel,et al. Irreversible Markov chains by the factorized Metropolis filter : algorithms and applications in particle systems and spin models , 2016 .
[10] Yi Sun,et al. Improving the Asymptotic Performance of Markov Chain Monte-Carlo by Inserting Vortices , 2010, NIPS.
[11] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[12] Kosuke Imai,et al. A New Automated Redistricting Simulator Using Markov Chain , 2014 .
[13] Kosuke Imai,et al. Automated Redistricting Simulation Using Markov Chain Monte Carlo , 2020, Journal of Computational and Graphical Statistics.
[14] P. Fearnhead,et al. The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data , 2016, The Annals of Statistics.
[15] Michael Chertkov,et al. Irreversible Monte Carlo Algorithms for Efficient Sampling , 2008, ArXiv.
[16] Jonathan C. Mattingly,et al. Evaluating Partisan Gerrymandering in Wisconsin , 2017, 1709.01596.
[17] Jonathan C. Mattingly,et al. Redistricting: Drawing the Line , 2017, 1704.03360.
[18] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[19] A. Doucet,et al. The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method , 2015, 1510.02451.
[20] Justin Solomon,et al. Complexity and Geometry of Sampling Connected Graph Partitions , 2019, ArXiv.
[21] General Construction of Irreversible Kernel in Markov Chain Monte Carlo , 2012, 1207.0258.
[22] J. Mattingly,et al. Redistricting and the Will of the People , 2014, 1410.8796.
[23] N. Pillai,et al. A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.
[24] Jonathan C. Mattingly,et al. Quantifying Gerrymandering in North Carolina , 2018, Statistics and Public Policy.
[25] Nawaf Bou-Rabee,et al. A comparison of generalized hybrid Monte Carlo methods with and without momentum flip , 2009, J. Comput. Phys..
[26] K. Hukushima,et al. An irreversible Markov-chain Monte Carlo method with skew detailed balance conditions , 2013 .
[27] Radford M. Neal. Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are Better , 2004, math/0407281.