Riemann Geometry for Color Characterization and Mapping

In this paper, we use Riemann geometry to develop a generalframework for the characterization of and mapping betweencolor spaces. Within this framework we show how to constructmaps, so-called isometries, between two color spaces that preservecolor differences. We illustrate applications of this frameworkby constructing a uniform color space and developing algorithmsfor color reproduction on different printers and correctionof color-vision for color-weak observers.

[1]  D. L. Macadam Geodesic chromaticity diagram based on variances of color matching by 14 normal observers. , 1971, Applied optics.

[2]  Jinhui Chao,et al.  On non-uniformness of color spaces in polychromatic perception , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[3]  E. Schrödinger Grundlinien einer Theorie der Farbenmetrik im Tagessehen , 1920 .

[4]  Jinhui Chao,et al.  On Construction of Uniform Color Spaces , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[5]  Jinhui Chao,et al.  On Definitions and Construction of Uniform Color Space , 2004, CGIV.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[8]  William R. Mathew,et al.  Color as a Science , 2005 .

[9]  Reiner Lenz,et al.  Color-weak correction by discrimination threshold matching , 2008, CGIV/MCS.