Single nucleotide polymorphisms as tools in human genetics.

The development of detailed single nucleotide polymorphism (SNP) maps of the human genome coupled with high-throughput genotyping technologies may allow us to unravel complex genetic traits, such as multifactorial disease or drug response, over the next few years. Here we describe the current efforts to identify and characterize the large numbers of SNPs required and discuss the practicalities of association studies for the identification of genes involved in complex traits.

[1]  M. Hattori,et al.  The DNA sequence of human chromosome 21 , 2000, Nature.

[2]  A. Jeffreys,et al.  High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. , 2000, Human molecular genetics.

[3]  R. Yamada,et al.  Identification of 187 single nucleotide polymorphisms (SNPs) among 41 candidate genes for ischemic heart disease in the Japanese population , 2000, Human Genetics.

[4]  N. Murata,et al.  Identification of 142 single nucleotide polymorphisms in 41 candidate genes for rheumatoid arthritis in the Japanese population , 2000, Human Genetics.

[5]  D. Harold,et al.  Determining SNP allele frequencies in DNA pools. , 2000, BioTechniques.

[6]  J. Ott,et al.  Predicting the range of linkage disequilibrium. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[7]  N E Morton,et al.  Genetic epidemiology of single-nucleotide polymorphisms. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[9]  D. Kwiatkowski,et al.  Superiority of Denaturing High Performance Liquid Chromatography over single‐stranded conformation and conformation‐sensitive gel electrophoresis for mutation detection in TSC2 , 1999, Annals of human genetics.

[10]  E. Gross,et al.  A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC , 1999, Human Genetics.

[11]  L Tiret,et al.  Sequence diversity in 36 candidate genes for cardiovascular disorders. , 1999, American journal of human genetics.

[12]  N. Shen,et al.  Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis , 1999, Nature Genetics.

[13]  L. Kruglyak Prospects for whole-genome linkage disequilibrium mapping of common disease genes , 1999, Nature Genetics.

[14]  M. Rieder,et al.  Sequence variation in the human angiotensin converting enzyme , 1999, Nature Genetics.

[15]  Bruce P. Neri,et al.  Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes , 1999, Nature Biotechnology.

[16]  M. O’Donovan,et al.  Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. , 1998, Genomics.

[17]  A. Jeffreys,et al.  High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. , 1998, Molecular cell.

[18]  E. Boerwinkle,et al.  DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene , 1998, Nature Genetics.

[19]  C. Nusbaum,et al.  Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. , 1998, Science.

[20]  R. W. Davis,et al.  Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. , 1997, Genome research.

[21]  D N Stivers,et al.  Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S Beck,et al.  Characterization of recombination in the HLA class II region. , 1997, American journal of human genetics.

[23]  J. Weissenbach,et al.  European Gene Mapping Project (EUROGEM): Breakpoint panels for human chromosomes based on the CEPH reference families , 1996, Annals of human genetics.

[24]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[25]  A. Roter,et al.  An approach to high-throughput genotyping. , 1996, Genome research.

[26]  E. Mariman,et al.  Localization of the gene for Cowden disease to chromosome 10q22–23 , 1996, Nature Genetics.

[27]  J. Witte,et al.  Genetic dissection of complex traits , 1996, Nature Genetics.

[28]  Cécile Fizames,et al.  A comprehensive genetic map of the human genome based on 5,264 microsatellites , 1996, Nature.

[29]  John A. Todd,et al.  Towards fully automated genome–wide polymorphism screening , 1995, Nature Genetics.

[30]  S. Antonarakis Genome linkage scanning: systematic or intelligent? , 1994, Nature Genetics.

[31]  M. Pericak-Vance,et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Pericak-Vance,et al.  Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. , 1991, American journal of human genetics.

[33]  K Kontula,et al.  A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. , 1990, Genomics.

[34]  T. Sekiya,et al.  Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Lichten,et al.  Detection of non-homology-containing heteroduplex molecules. , 1983, Nucleic acids research.

[36]  Jeffrey H. Miller,et al.  Mutagenic deamination of cytosine residues in DNA , 1980, Nature.

[37]  D. Botstein,et al.  Construction of a genetic linkage map in man using restriction fragment length polymorphisms. , 1980, American journal of human genetics.

[38]  Carol Dobson-Stone,et al.  Comparison of fluorescent single-strand conformation polymorphism analysis and denaturing high-performance liquid chromatography for detection of EXT1 and EXT2 mutations in hereditary multiple exostoses , 2000, European Journal of Human Genetics.

[39]  M. Worwood,et al.  A rapid automated SSCP multiplex capillary electrophoresis protocol that detects the two common mutations implicated in hereditary hemochromatosis (HH) , 1999, Human Genetics.

[40]  J. Hacia Resequencing and mutational analysis using oligonucleotide microarrays , 1999, Nature Genetics.

[41]  E. Lander,et al.  Characterization of single-nucleotide polymorphisms in coding regions of human genes , 1999, Nature Genetics.

[42]  J. Dausset Le centre d'étude du polymorphisme humain. , 1986 .