Witnessing quantum scrambling with steering

Quantum information scrambling describes the delocalization of local information to global information in the form of entanglement throughout all possible degrees of freedom. A well-known scrambling witness is the so-called out-of-time-ordered correlator (OTOC), which can identify scrambling because it is closely related to the incompatibility of two separate operators at two different times. In this work, we show that quantum scrambling can also be witnessed by using techniques from temporal quantum steering. We can do so because, for qubits systems, there is a fundamental equivalence between the Choi-Jamiolkowski isomorphism and the pseudo-density matrix formalism used in temporal quantum correlations. Based on this relationship, we propose a scrambling witness, based on a measure of temporal steering called the robustness. We justify the properties of this quantity as a witness of scrambling by proving that the quantity vanishes when the channel is non-scrambling.

[1]  Franco Nori,et al.  Spatio-Temporal Steering for Testing Nonclassical Correlations in Quantum Networks , 2016, Scientific Reports.

[2]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[3]  Vlatko Vedral,et al.  Quantum correlations which imply causation , 2013, Scientific Reports.

[4]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[5]  G M D'Ariano,et al.  Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. , 2001, Physical review letters.

[6]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[7]  Franco Nori,et al.  Temporal steering in four dimensions with applications to coupled qubits and magnetoreception , 2016, 1610.05490.

[8]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[10]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[11]  Daniel A. Roberts,et al.  Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. , 2015, Physical review letters.

[12]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[13]  Jordan S. Cotler,et al.  Chaos, complexity, and random matrices , 2017, Journal of High Energy Physics.

[14]  J. Fitzsimons,et al.  Causal Limit on Quantum Communication. , 2018, Physical review letters.

[15]  D. Stamper-Kurn,et al.  Interferometric Approach to Probing Fast Scrambling , 2016, 1607.01801.

[16]  Franco Nori,et al.  Temporal steering inequality , 2013, 1310.4970.

[17]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[18]  Mike Blake,et al.  Universal Charge Diffusion and the Butterfly Effect in Holographic Theories. , 2016, Physical review letters.

[19]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[20]  C. Monroe,et al.  Verified quantum information scrambling , 2018, Nature.

[21]  N. Yao,et al.  Disentangling Scrambling and Decoherence via Quantum Teleportation , 2018, Physical Review X.

[22]  Hui Zhai,et al.  Out-of-time-order correlation for many-body localization. , 2016, Science bulletin.

[23]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[24]  L. Susskind,et al.  Fast Scram blers , 2008, 0808.2096.

[25]  Franco Nori,et al.  Quantifying Non-Markovianity with Temporal Steering. , 2015, Physical review letters.

[26]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[27]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[28]  Bo Liu,et al.  Quantum Temporal Steering in a Dephasing Channel With Quantum Criticality , 2018, 1804.05171.

[29]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[30]  A. G. White,et al.  Ancilla-assisted quantum process tomography. , 2003, Physical review letters.

[31]  R. M. Angelo,et al.  Quantification of Einstein-Podolski-Rosen steering for two-qubit states , 2015, 1510.08030.

[32]  V. Vedral,et al.  Quantum correlations in time , 2020, 2002.10448.

[33]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[34]  Zhenbin Yang,et al.  Diving into traversable wormholes , 2017, 1704.05333.

[35]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[36]  D. Janzing,et al.  A quantum advantage for inferring causal structure , 2015, Nature Physics.

[37]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[38]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[39]  Nicole Yunger Halpern,et al.  Resilience of scrambling measurements , 2018, Physical Review A.

[40]  F. Brandão,et al.  Finite-Size Scaling of Out-of-Time-Ordered Correlators at Late Times. , 2017, Physical review letters.

[41]  Otfried Gühne,et al.  Quantum steering , 2019, Reviews of Modern Physics.

[42]  Aron C. Wall,et al.  Traversable wormholes via a double trace deformation , 2016, Journal of High Energy Physics.

[43]  J. Fitzsimons,et al.  Geometry of quantum correlations in space-time , 2017, Physical Review A.

[44]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[45]  Franco Nori,et al.  Temporal steering and security of quantum key distribution with mutually unbiased bases against individual attacks , 2015, 1503.00612.

[46]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[47]  Le Phuc Thinh,et al.  Quantum randomness extraction for various levels of characterization of the devices , 2014, 1401.4243.

[48]  José Raúl González Alonso,et al.  Out-of-Time-Ordered-Correlator Quasiprobabilities Robustly Witness Scrambling. , 2018, Physical review letters.

[49]  Franco Nori,et al.  Hierarchy in temporal quantum correlations , 2017, Physical Review A.

[50]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[51]  Garg,et al.  Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? , 1985, Physical review letters.

[52]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.

[53]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[54]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  Shin-Liang Chen,et al.  Detecting the existence of an invisibility cloak using temporal steering , 2015, Scientific reports.