Abstract A new computational fluid dynamics (CFD) simulation for designing indoor climates is presented in this study. It is coupled with a radiative heat transfer simulation and heating, ventilating, and air-conditioning (HVAC) control system in a room. This new method can feed back the outputs of the CFD to the input conditions for controlling the HVAC system, and includes a human model to evaluate the thermal environment. It can be used to analyze the conditions of the HVAC system (e.g. temperature of supply air, surface temperature of radiation panel, etc.) and the heating/cooling loads of different HVAC systems under the condition of the same human thermal sensation (e.g. PMV, operative temperature, etc.) To examine the performance of the new method, a thermal environment within a semi-enclosed space which opens into an atrium space is analyzed under steady-state conditions in the summer season. Using this method, the most energy efficient HVAC system can be chosen under the same PMV value. In this paper, two types of HVAC system are compared: one is a radiation-panel system and the other is an all-air cooling system. The radiation-panel cooling is found to be more energy efficient for cooling the semi-enclosed space in this study.
[1]
Shuzo Murakami,et al.
Combined simulation of airflow, radiation and moisture transport for heat release from a human body
,
2000
.
[2]
Kazuhiko Kudo,et al.
Monte Carlo simulation of indoor radiant environment
,
1990
.
[3]
A. Moser,et al.
Indoor airflow with cooling panel and radiative/convective heat source
,
1992
.
[4]
Shuzo Murakami,et al.
CFD analysis of flow and temperature fields in atrium with ceiling height of 130 m
,
1995
.
[5]
Refrigerating.
ASHRAE handbook and product directory /published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc
,
1977
.
[6]
B. Launder,et al.
The numerical computation of turbulent flows
,
1990
.
[7]
Shuzo Murakami,et al.
Numerical simulation of solar heat absorption within indoor space by means of composite grid method
,
1997
.
[8]
Refrigerating.
ASHRAE handbook of fundamentals
,
1967
.