On the resonances of a dielectric BOR buried in a dispersive layered medium

A method-of-moments (MoM) analysis is applied to the problem of determining late-time resonances of dielectric bodies of revolution buried in a lossy layered medium, with application to plastic-land-mine identification. To make such an analysis tractable, we have employed the method of complex images to evaluate the layered-medium Green's function. The application of this method to resonant structures characterized by complex resonant frequencies, introduces numerical issues not manifested at real frequencies (i.e., for driven problems) with such discussed here in detail. Numerical results are presented for several buried targets in which we demonstrate, for example, the spiraling character of the resonant frequencies of particular targets as a function of the target depth.

[1]  Approximate natural response of an arbitrarily shaped thin wire scatterer , 1991 .

[2]  L. Peters,et al.  Ground penetrating radar as a subsurface environmental sensing tool , 1994, Proc. IEEE.

[3]  A. Glisson,et al.  Evaluation of Modes in Dielectric Resonators Using a Surface Integral Equation Formulation , 1983, 1983 IEEE MTT-S International Microwave Symposium Digest.

[4]  Abinash C. Dubey,et al.  Detection and Remediation Technologies for Mines and Minelike Targets II , 1997 .

[5]  E.J. Rothwell,et al.  Approximate natural response of an arbitrarily shaped thin wire scatterer , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[6]  Donald G. Dudley,et al.  Parametric modeling of transient electromagnetic systems , 1979 .

[7]  George C. Sherman,et al.  Electromagnetic Pulse Propagation in Causal Dielectrics , 1994 .

[8]  Lawrence Carin,et al.  Leaky waves on broadside-coupled microstrip , 1992 .

[9]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[10]  Hiroshi Shirai,et al.  Modified GTD for generating complex resonances for flat strips and disks , 1986 .

[11]  R. Mittra,et al.  EVALUATION OF SOMMERFELD INTEGRALS FOR LOSSY HALF-SPACE PROBLEMS , 1981 .

[12]  D. M. Pozar,et al.  Full-wave spectral-domain computation of material, radiation, and guided wave losses in infinite multilayered printed transmission lines , 1991 .

[13]  J. R. Wait Image theory of a quasistatic magnetic dipole over a dissipative half-space , 1969 .

[14]  Lawrence Carin,et al.  Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement , 1997, IEEE Trans. Geosci. Remote. Sens..

[15]  L. Carin,et al.  Resonances of perfectly conducting wires and bodies of revolution buried in a lossy dispersive half-space , 1996 .

[16]  Carl E. Baum,et al.  On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems , 1971 .

[17]  K. Michalski,et al.  Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I. Theory , 1990 .

[18]  T. H. Shumpert,et al.  Natural resonances of conducting bodies of revolution , 1990 .

[19]  Trajectories of the singularities of a thin wire scatterer parallel to lossy ground , 1979 .

[20]  L. Carin,et al.  Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution , 1996 .

[21]  Samir F. Mahmoud,et al.  New image representation for dipoles near a dissipative earth 1. Discrete images , 1981 .

[22]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[23]  F. Tesche,et al.  On the analysis of scattering and antenna problems using the singularity expansion technique , 1973 .

[24]  Edward J. Rothwell,et al.  On the natural frequencies of an annular ring above a conducting half space , 1996 .

[25]  Ismo V. Lindell,et al.  Exact image theory for the Sommerfeld half-space problem, part III: General formulation , 1984 .

[26]  Ehud Heyman,et al.  A wavefront interpretation of the singularity expansion method , 1985 .

[27]  J. J. Yang,et al.  Discrete complex images of a three-dimensional dipole above and within a lossy ground , 1991 .

[28]  K. Michalski,et al.  Analysis of microstrip resonators of arbitrary shape , 1992 .

[29]  K. Mei,et al.  Scattering of Electromagnetic Waves by Buried and Partly Buried Bodies of Revolution , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[30]  L. Marin,et al.  Natural-mode representation of transient scattered fields , 1973 .

[31]  Barbara L. Merchant,et al.  Complex pole patterns of the scattering amplitude for conducting spheroids and finite-length cylinders , 1988 .

[32]  Mikio Tsuji,et al.  Packaging of printed-circuit lines: a dangerous cause for narrow pulse distortion , 1994 .

[33]  L. Carin,et al.  Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium , 1999 .

[34]  J. E. Hipp Soil electromagnetic parameters as functions of frequency, soil density, and soil moisture , 1974 .

[35]  R. Shubair,et al.  A simple and accurate complex image interpretation of vertical antennas present in contiguous dielectric half-spaces , 1993 .

[36]  M. Rodwell,et al.  Generation of 3.5-ps fall-time shock waves on a monolithic GaAs nonlinear transmission line , 1988, IEEE Electron Device Letters.

[37]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[38]  Raj Mittra,et al.  A technique for extracting the poles and residues of a system directly from its transient response , 1975 .

[39]  G. E. Howard,et al.  A closed-form spatial Green's function for the thick microstrip substrate , 1991 .

[40]  T. Tamir,et al.  GUIDED COMPLEX WAVES: PART I. FIELDS AT AN INTERFACE , 1963 .

[41]  Glenn S. Smith,et al.  A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment , 1996, IEEE Trans. Geosci. Remote. Sens..