Quantum Zeno Dynamics from General Quantum Operations

We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker-Campbell-Hausdorff formula allowing to reformulate such pulsed dynamics as a continuous one. This reveals an adiabatic evolution. We obtain a general type of quantum Zeno dynamics, which unifies all known manifestations in the literature as well as describing new types.

[1]  Lorenza Viola Quantum control via encoded dynamical decoupling , 2002 .

[2]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[3]  Fernando Casas,et al.  On the convergence and optimization of the Baker–Campbell–Hausdorff formula , 2004 .

[4]  M. Fraas Quantum adiabatic theory ventures into zeno dynamics , 2019, Quantum Views.

[5]  P. Facchi,et al.  Quantum Zeno subspaces. , 2002, Physical review letters.

[6]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[7]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[8]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[9]  Masaki Aihara,et al.  Multipulse control of decoherence , 2002 .

[10]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[11]  Daniel A. Lidar,et al.  Analysis of the quantum Zeno effect for quantum control and computation , 2012, 1207.5880.

[12]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[13]  Liang Jiang,et al.  Geometry and Response of Lindbladians , 2015 .

[14]  J. Z. Bern'ad Dynamical control of quantum systems in the context of mean ergodic theorems , 2016, 1603.07287.

[15]  D. Burgarth,et al.  Generalized product formulas and quantum control , 2019, Journal of Physics A: Mathematical and Theoretical.

[16]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[17]  P. Facchi,et al.  From the quantum zeno to the inverse quantum zeno effect. , 2000, Physical review letters.

[18]  Peter D. Johnson,et al.  Alternating Projections Methods for Discrete-Time Stabilization of Quantum States , 2016, IEEE Transactions on Automatic Control.

[19]  Wolfgang Ketterle,et al.  Continuous and pulsed quantum zeno effect. , 2006, Physical review letters.

[20]  Lawrence S. Schulman,et al.  Continuous and pulsed observations in the quantum Zeno effect , 1998 .

[21]  P. Zanardi,et al.  Geometry, robustness, and emerging unitarity in dissipation-projected dynamics , 2014, 1412.6198.

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  John Calsamiglia,et al.  Adiabatic markovian dynamics. , 2010, Physical review letters.

[24]  G. Guo,et al.  Suppressing environmental noise in quantum computation through pulse control , 1999 .

[25]  E.C.G. Sudarshan,et al.  Quantum Zeno dynamics , 2000 .

[26]  Daniel A. Lidar,et al.  Zeno effect for quantum computation and control. , 2011, Physical review letters.

[27]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[28]  D. Lidar,et al.  Unification of dynamical decoupling and the quantum Zeno effect (6 pages) , 2003, quant-ph/0303132.

[29]  R. Carter Lie Groups , 1970, Nature.

[30]  D. A. Lidar,et al.  Control of decoherence: Analysis and comparison of three different strategies (22 pages) , 2005 .

[31]  Fei Yan,et al.  A quantum engineer's guide to superconducting qubits , 2019, Applied Physics Reviews.

[32]  P. Exner,et al.  A Product Formula Related to Quantum Zeno Dynamics , 2003, Annales Henri Poincaré.

[33]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[34]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[35]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[36]  Tosio Kato Perturbation theory for linear operators , 1966 .

[37]  P. Facchi,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2008, 0903.3297.

[38]  B. Hall Lie Groups, Lie Algebras, and Representations , 2003 .

[39]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .

[41]  P. Zanardi,et al.  Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems. , 2014, Physical review letters.

[42]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[43]  Paolo Facchi,et al.  Non-Markovian noise that cannot be dynamically decoupled by periodic spin echo pulses , 2019, SciPost Physics.

[44]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[45]  Paolo Facchi,et al.  Dynamical decoupling of unbounded Hamiltonians , 2017, 1704.06143.

[46]  S. Blanes,et al.  The Magnus expansion and some of its applications , 2008, 0810.5488.

[47]  On noise-induced superselection rules , 2003, quant-ph/0311195.

[48]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[49]  A. Messiah Quantum Mechanics , 1961 .

[50]  Michael M. Wolf,et al.  Spectral Convergence Bounds for Classical and Quantum Markov Processes , 2013, 1301.4827.

[51]  Tosio Kato On the Adiabatic Theorem of Quantum Mechanics , 1950 .

[52]  J. P. Garrahan,et al.  Towards a Theory of Metastability in Open Quantum Dynamics. , 2015, Physical review letters.

[53]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[54]  D. Burgarth,et al.  Generalized Adiabatic Theorem and Strong-Coupling Limits , 2018, Quantum.

[55]  L. Kwek,et al.  Quantum zeno effect of general quantum operations , 2013, 1305.2464.

[56]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[57]  A. Smerzi,et al.  Experimental realization of quantum zeno dynamics , 2013, Nature Communications.

[58]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.

[59]  Dariusz Chruscinski,et al.  A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..

[60]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[61]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[62]  P. Facchi,et al.  Quantum Zeno effect and dynamics , 2009, 0911.2201.

[63]  V. Paulsen,et al.  COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS (Cambridge Studies in Advanced Mathematics 78) , 2004 .