A practical method for the sparse resultant

We propose an efficient method for computing the resultant, of a sparse polynomial system of n + 1 equations in n unknowns. Our approach carries over from [(UE93] and constructs a matrix whose determinant is a nonzero multiple of the resultant, and from which the latter is easily extracted. For certain classes of syskms, it attains optimality by expressing the resultant, as a sillgle determinant. An illll>lenlelltatioll of the algorithm is described and empirical results presented and conlpared with those from [CE93] and [SZ]. In addition, the important subproblem of computiug Mixed [Tolumes is examined and an efficient algorithm is inlplemeuted.

[1]  W. Wells,et al.  Modern higher algebra , 2022 .

[2]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[3]  Dinesh Manocha,et al.  Implicit Representation of Rational Parametric Surfaces , 1992, J. Symb. Comput..

[4]  R. Tennant Algebra , 1941, Nature.

[5]  John F. Canny,et al.  An Efficient Algorithm for the Sparse Mixed Resultant , 1993, AAECC.

[6]  John F. Canny,et al.  An efficient approach to removing geometric degeneracies , 1992, SCG '92.

[7]  Bernd Sturmfels,et al.  Chow polytopes and general resultants , 1992 .

[8]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[9]  A. Khovanskii Newton polyhedra and the genus of complete intersections , 1978 .

[10]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .

[11]  Dinesh Manocha,et al.  Real time inverse kinematics for general 6R manipulators , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[12]  Bernd Sturmfels,et al.  Product formulas for resultants and Chow forms , 1993 .

[13]  Joe Warren,et al.  On the Applications of Multi-Equational Resultants , 1988 .

[14]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[15]  Dinesh Manocha,et al.  Multipolynomial resultants and linear algebra , 1992, ISSAC '92.

[16]  F. S. Macaulay Some Formulæ in Elimination , 1902 .

[17]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[18]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[19]  Marc Chardin The Resultant via a Koszul Complex , 1993 .