Narrow proofs may be spacious: separating space and width in resolution

The width of a resolution proof is the maximal number of literals in any clause of the proof. The space of a proof is the maximal number of clauses kept in memory simultaneously if the proof is only allowed to infer new clauses from clauses currently in memory. Both of these measures have previously been studied and related to the resolution refutation size of unsatisfiable CNF formulas. Also, the refutation space of a formula has been proven to be at least as large as the refutation width, but it has been open whether space can be separated from width or the two measures coincide asymptotically. We prove that there is a family of k-CNF formulas for which the refutation width in resolution is constant but the refutation space is non-constant, thus solving a problem mentioned in several previous papers.

[1]  Maria Luisa Bonet,et al.  On the automatizability of resolution and related propositional proof systems , 2002, Inf. Comput..

[2]  Robert E. Tarjan,et al.  The Space Complexity of Pebble Games on Trees , 1980, Inf. Process. Lett..

[3]  Jacobo Torán,et al.  Space Bounds for Resolution , 1999, STACS.

[4]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[5]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[6]  Johan Håstad,et al.  Towards an optimal separation of space and length in resolution , 2008, Theory Comput..

[7]  Maria Luisa Bonet,et al.  Lower Bounds for the Weak Pigeonhole Principle and Random Formulas beyond Resolution , 2002, Inf. Comput..

[8]  Jacobo Torán,et al.  Minimally Unsatisfiable CNF Formulas , 2001, Bull. EATCS.

[9]  Eli Ben-Sasson,et al.  Space complexity of random formulae in resolution , 2003, Random Struct. Algorithms.

[10]  Alexander A. Razborov,et al.  Electronic Colloquium on Computational Complexity, Report No. 75 (2001) Resolution Lower Bounds for the Weak Functional Pigeonhole Principle , 2001 .

[11]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[12]  Samuel R. Buss,et al.  Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..

[13]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[14]  Maria Luisa Bonet,et al.  Optimality of size-width tradeoffs for resolution , 2001, computational complexity.

[15]  Jacobo Torán Lower Bounds for Space in Resolution , 1999, CSL.

[16]  Zvi Galil On Resolution with Clauses of Bounded Size , 1977, SIAM J. Comput..

[17]  J. Krajícek On the weak pigeonhole principle , 2001 .

[18]  Jochen Messner,et al.  On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.

[19]  EstebanJuan Luis,et al.  A combinatorial characterization of treelike resolution space , 2003 .

[20]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[21]  Archie Blake Canonical expressions in Boolean algebra , 1938 .

[22]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[23]  J. Kraj On the Weak Pigeonhole Principle , 2001 .

[24]  Robert E. Tarjan,et al.  Variations of a pebble game on graphs , 1978 .

[25]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[26]  Jacobo Torán,et al.  Space and Width in Propositional Resolution (Column: Computational Complexity) , 2004, Bull. EATCS.

[27]  Eli Ben-Sasson,et al.  Size space tradeoffs for resolution , 2002, STOC '02.

[28]  Stephen A. Cook,et al.  Storage requirements for deterministic / polynomial time recognizable languages , 1974, STOC '74.

[29]  Maria M. Klawe A Tight Bound for Black and White Pebbles on the Pyramid , 1983, FOCS.

[30]  Leslie G. Valiant,et al.  On Time Versus Space , 1977, JACM.

[31]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[32]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[33]  Samuel R. Buss,et al.  A Switching Lemma for Small Restrictions and Lower Bounds for k-DNF Resolution , 2004, SIAM J. Comput..

[34]  Robert E. Tarjan,et al.  Upper and lower bounds on time-space tradeoffs , 1979, STOC '79.

[35]  Maria Luisa Bonet,et al.  A study of proof search algorithms for resolution and polynomial calculus , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[36]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[37]  Michael Alekhnovich Lower bounds for k-DNF resolution on random 3-CNFs , 2005, STOC.

[38]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[39]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2008, J. Comput. Syst. Sci..

[40]  Ran Raz,et al.  Separation of the Monotone NC Hierarchy , 1999, Comb..

[41]  Jan Kraj́ıček,et al.  Proof complexity , 2019, Mathematics and Computation.

[42]  Michael Alekhnovich,et al.  An Exponential Separation between Regular and General Resolution , 2007, Theory Comput..

[43]  Jacobo Torán,et al.  A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..

[44]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[45]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[46]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[47]  Michael Alekhnovich,et al.  Space Complexity in Propositional Calculus , 2002, SIAM J. Comput..

[48]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[49]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[50]  S. Buss Handbook of proof theory , 1998 .

[51]  Alexander A. Razborov Resolution lower bounds for perfect matching principles , 2004, J. Comput. Syst. Sci..

[52]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[53]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[54]  Toniann Pitassi,et al.  The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[55]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..