On the shock structure problem for hyperbolic system of balance laws and convex entropy

In this paper we give a brief survey of the problem of shock structure solutions in fluid dynamics. For a generic system of balance laws compatible with an entropy principle and a convex entropy we prove that $C^1$ solutions cannot exist when the shock velocity exceeds the maximum characteristic velocity in the equilibrium state in front of the shock. This is in agreement with a conjecture of Extended Thermodynamics.

[1]  Tommaso Ruggeri,et al.  Moment equations in the kinetic theory of gases and wave velocities , 1997 .

[2]  Harold Grad,et al.  The profile of a steady plane shock wave , 1952 .

[3]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Tommaso Ruggeri,et al.  Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions , 1997 .

[5]  H. Alsmeyer,et al.  Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam , 1976, Journal of Fluid Mechanics.

[6]  H. Mott-Smith,et al.  The Solution of the Boltzmann Equation for a Shock Wave , 1951 .

[7]  Graeme A. Bird,et al.  Aspects of the Structure of Strong Shock Waves , 1970 .

[8]  Pavón,et al.  Nonlocal and nonlinear effects in shock waves. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  K. Zoller Zur Struktur des Verdichtungsstoßes , 1951 .

[10]  R. Caflisch,et al.  Stability of shock waves for the Broadwell equations , 1988 .

[11]  Ruggeri Breakdown of shock-wave-structure solutions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  J. Foch On Higher Order Hydrodynamic Theories of Shock Structure , 1973 .

[13]  Weiss Continuous shock structure in extended thermodynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  D. Gilbarg,et al.  The Structure of Shock Waves in the Continuum Theory of Fluids , 1953 .

[15]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[16]  R. Becker,et al.  Stoßwelle und Detonation , 1922 .

[17]  Tommaso Ruggeri,et al.  Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics , 1981 .

[18]  Kurt Friedrichs,et al.  [71-1] Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686–1688 , 1986 .

[19]  W. Israel Covariant fluid mechanics and thermodynamics: An introduction , 1989 .

[20]  T. Ruggeri,et al.  Galilean invariance and entropy principle for systems of balance laws , 1989 .

[21]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[22]  A. M. Anile,et al.  Shock structure for heat conducting and viscid fluids , 1981 .

[23]  Tommaso Ruggeri On the shock structure problem in non-equilibrium Thermodynamics of gases , 1996 .