Inverse problems in spacetime I: Inverse problems for Einstein equations - Extended preprint version

We consider inverse problems for the coupled Einstein equations and the matter field equations on a 4-dimensional globally hyperbolic Lorentzian manifold $(M,g)$. We give a positive answer to the question: Do the active measurements, done in a neighborhood $U\subset M$ of a freely falling observed $\mu=\mu([s_-,s_+])$, determine the conformal structure of the spacetime in the minimal causal diamond-type set $V_g=J_g^+(\mu(s_-))\cap J_g^-(\mu(s_+))\subset M$ containing $\mu$? More precisely, we consider the Einstein equations coupled with the scalar field equations and study the system $Ein(g)=T$, $T=T(g,\phi)+F_1$, and $\square_g\phi-\mathcal V^\prime(\phi)=F_2$, where the sources $F=(F_1,F_2)$ correspond to perturbations of the physical fields which we control. The sources $F$ need to be such that the fields $(g,\phi,F)$ are solutions of this system and satisfy the conservation law $\nabla_jT^{jk}=0$. Let $(\hat g,\hat \phi)$ be the background fields corresponding to the vanishing source $F$. We prove that the observation of the solutions $(g,\phi)$ in the set $U$ corresponding to sufficiently small sources $F$ supported in $U$ determine $V_{\hat g}$ as a differentiable manifold and the conformal structure of the metric $\hat g$ in the domain $V_{\hat g}$. The methods developed here have potential to be applied to a large class of inverse problems for non-linear hyperbolic equations encountered e.g. in various practical imaging problems.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Michael E. Taylor,et al.  Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem , 2002, math/0211376.

[3]  P. Hintz,et al.  Semilinear wave equations on asymptotically de Sitter, Kerr–de Sitter and Minkowski spacetimes , 2013, 1306.4705.

[4]  H. Ringström The Cauchy Problem in General Relativity , 2009 .

[5]  Nils Andersson,et al.  Relativistic Fluid Dynamics: Physics for Many Different Scales , 2006, Living Reviews in Relativity.

[6]  Xiao Zhong,et al.  An Inverse Problem for the p-Laplacian: Boundary Determination , 2011, SIAM J. Math. Anal..

[7]  Maarten V. de Hoop,et al.  Regularity and multi-scale discretization of the solution construction of hyperbolic evolution equations with limited smoothness , 2012 .

[8]  S. Deser,et al.  Instability of closed spaces in general relativity , 1973 .

[9]  M. Beals Self-spreading and strength of singularities for solutions to semilinear wave equations , 1983 .

[10]  N. Dencker On the propagation of polarization sets for systems of real principal type , 1982 .

[11]  D. Christodoulou Global existence of generalized solutions of the spherically symmetric Einstein-scalar equations in the large , 1986 .

[12]  Gen Nakamura,et al.  An inverse boundary value problem for a nonlinear wave equation , 2008 .

[13]  Jean-Marc Delort,et al.  F.B.I. Transformation: Second Microlocalization and Semilinear Caustics , 1992 .

[14]  Maarten V. de Hoop,et al.  Sensitivity Analysis of Wave-equation Tomography: A Multi-scale Approach , 2010 .

[15]  A. Rendall Local and Global Existence Theorems for the Einstein Equations , 2000, Living reviews in relativity.

[16]  A. Füzfa How current loops and solenoids curve space-time , 2016 .

[17]  J. Marsden,et al.  The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I , 1972 .

[18]  The Einstein-Scalar Field Constraints on Asymptotically Euclidean Manifolds* , 2005, gr-qc/0506101.

[19]  Alexander L. Gaeta,et al.  Demonstration of Temporal Cloaking , 2011 .

[20]  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[21]  T. Krouskop,et al.  Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues , 1999, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  Y. Choquet-bruhat,et al.  On the stability of flat space , 1973 .

[23]  Gunther Uhlmann,et al.  Recovering singularities of a potential from singularities of scattering data , 1993 .

[24]  J. Sjöstrand,et al.  Fourier integral operators with complex-valued phase functions , 1975 .

[25]  March,et al.  Gaussian beams and the propagation of singularities , 2014 .

[26]  A. Katchalov,et al.  Multidimensional inverse problem with incomplete boundary spectral data , 1998 .

[27]  D. Pollack,et al.  Applications of theorems of Jean Leray to the Einstein-scalar field equations , 2006, gr-qc/0611009.

[28]  Y. Choquet-bruhat General Relativity and the Einstein Equations , 2009 .

[29]  A. Vasy Diffraction by Edges , 2008 .

[30]  M. Lassas,et al.  Inverse spectral problems on a closed manifold , 2007, 0709.2171.

[31]  Par S. Alinhac Non-unicite du probleme de Cauchy , 1983 .

[32]  A. Rendall Partial differential equations in general relativity , 2008 .

[33]  Antonio N. Bernal,et al.  Communications in Mathematical Physics Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes , 2005 .

[34]  Gunther Uhlmann,et al.  The inverse problem for the local geodesic ray transform , 2012, 1210.2084.

[35]  On 'many-black-hole' vacuum spacetimes , 2002, gr-qc/0210103.

[36]  A. Bernal,et al.  Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’ , 2006, gr-qc/0611138.

[37]  Gunther Uhlmann,et al.  Tensor tomography on surfaces , 2011, 1109.0505.

[38]  Daniel Tataru,et al.  Unique continuation for operatorswith partially analytic coefficients , 1999 .

[39]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[40]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[41]  J. Bony Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations , 1986 .

[42]  J. Weber Detection and Generation of Gravitational Waves , 1960 .

[43]  András Vasy Propagation of singularities for the wave equation on manifolds with corners , 2005 .

[44]  L. Hörmander Fourier integral operators. I , 1995 .

[45]  Rakesh,et al.  Uniqueness for an inverse problem for the wave equation , 1988 .

[46]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[47]  D. Long,et al.  A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's Constant , 1996, astro-ph/9610162.

[48]  M. Maggiore Gravitational Waves: Volume 1: Theory and Experiments , 2007 .

[49]  M. Salo,et al.  Broken ray transform on a Riemann surface with a convex obstacle , 2014, 1403.5131.

[50]  P. Hintz,et al.  Global Analysis of Quasilinear Wave Equations on Asymptotically Kerr-de Sitter Spaces , 2016 .

[51]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[52]  G. Eskin Inverse Hyperbolic Problems and Optical Black Holes , 2008, 0809.3983.

[53]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[54]  C. Kenig,et al.  Determining an Unbounded Potential from Cauchy Data in Admissible Geometries , 2011, 1104.0232.

[55]  E. Larsson Broken causal lens rigidity and sky shadow rigidity of Lorentzian manifolds , 2015, 1512.05200.

[56]  M. Lassas,et al.  An inverse problem for the wave equation with one measurement and the pseudorandom noise , 2010, 1011.2527.

[57]  A. Taub Relativistic Fluid Mechanics , 1978 .

[58]  Christian Baer,et al.  Wave Equations on Lorentzian Manifolds and Quantization , 2007, 0806.1036.

[59]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[60]  Ziqi Sun On a quasilinear inverse boundary value problem , 1996 .

[61]  K. Parker,et al.  Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments. , 2007, The Journal of the Acoustical Society of America.

[62]  Microlocal propagation near radial points and scattering for symbolic potentials of order zero , 2005, math/0502398.

[63]  A. Greenleaf,et al.  Fourier integral operators with open umbrellas and seismic inversion for cusp caustics , 2010, 1001.4848.

[64]  G. Uhlmann,et al.  Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations , 2014, 1405.3386.

[65]  Mihalis Dafermos The evolution problem in general relativity , 2008 .

[66]  Gunther Uhlmann,et al.  Lagrangian Intersection and the Cauchy Problem , 1979 .

[67]  Colin Guillarmou,et al.  Inverse problems for Einstein manifolds , 2007, 0710.1136.

[68]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[69]  Jeffrey Rauch,et al.  Singularities produced by the nonlinear interaction of three progressing waves;,examples , 1982 .

[70]  Tristan C. Collins,et al.  A multi-dimensional resolution of singularities with applications to analysis , 2010, 1007.0519.

[72]  Gunther Uhlmann,et al.  Estimates for singular radon transforms and pseudodifferential operators with singular symbols , 1990 .

[73]  Daniel Pollack,et al.  A Brief Review of Initial Data Engineering , 2006 .

[74]  Peter R. Hoskins,et al.  Principles of ultrasound elastography , 2012 .

[75]  Alberto Favaro,et al.  A Spacetime Cloak , or a History , 2012 .

[76]  Antonio S'a Barreto,et al.  Inverse scattering on asymptotically hyperbolic manifolds , 1998, math/9811118.

[77]  P. Stefanov Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials , 1989 .

[78]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[79]  G. Uhlmann,et al.  Boundary rigidity with partial data , 2013, 1306.2995.

[80]  Niles Ritter,et al.  Interaction of nonlinear progressing waves for semilinear wave equations , 1985 .

[81]  J. Marsden,et al.  The Absence of Killing Fields is Necessary for Linearization Stability of Einstein's Equations , 1979 .

[82]  Jeffrey R. Weeks,et al.  Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background , 2003, Nature.

[83]  Hung-Hsi Wu,et al.  General Relativity for Mathematicians , 1983 .

[84]  M. I. Belishev,et al.  To the reconstruction of a Riemannian manifold via its spectral data (BC-method) , 1992 .

[85]  Thanu Padmanabhan,et al.  Gravitation: Foundations and Frontiers , 2010 .

[86]  J. Wunsch,et al.  Propagation of singularities for the wave equation on conic manifolds , 2004 .

[87]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[88]  Hyeonbae Kang,et al.  Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map , 2002 .

[89]  R. Melrose,et al.  Interaction of progressing waves for semilinear wave equations. II , 1987 .

[90]  G. Uhlmann,et al.  Inverse problems in quasilinear anisotropic media , 1997 .

[91]  Victor Isakov,et al.  GLOBAL UNIQUENESS FOR A TWO-DIMENSIONAL SEMILINEAR ELLIPTIC INVERSE PROBLEM , 1995 .

[92]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[93]  M. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[94]  Mourad Choulli,et al.  INVERSE SCATTERING AND INVERSE BOUNDARY VALUE PROBLEMS FOR THE LINEAR BOLTZMANN EQUATION , 1996 .

[95]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[96]  V. M. Babich,et al.  Complex space-time ray method and “quasiphotons” , 1984 .

[97]  S. Klainerman,et al.  The Global Nonlinear Stability of the Minkowski Space. , 1994 .

[98]  I. Rodnianski,et al.  Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations , 2013, 1301.1072.

[99]  D. Pollack,et al.  The constraint equations for the Einstein-scalar field system on compact manifolds , 2006, gr-qc/0610045.

[100]  R. Geroch,et al.  The domain of dependence , 1970 .

[101]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[102]  Gunther Uhlmann,et al.  Oscillatory integrals with singular symbols , 1981 .

[103]  Inverse Scattering at Fixed Energy on Surfaces with Euclidean Ends , 2010, 1004.0315.

[104]  V. Isakov,et al.  On uniqueness in inverse problems for semilinear parabolic equations , 1993 .

[105]  M. C. Dafermos Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations , 2001 .

[106]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[107]  Antonio S'a Barreto,et al.  Asymptotics of Solutions of the Wave Equation on de Sitter-Schwarzschild Space , 2008, 0811.2229.

[108]  J. Marsden,et al.  Linearization stability of the Einstein equations , 1973 .

[109]  Scattering matrix in conformal geometry , 2001, math/0109089.

[110]  Joyce R. McLaughlin,et al.  Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts , 2006 .