Estimation of IRT graded response models: limited versus full information methods.

The performance of parameter estimates and standard errors in estimating F. Samejima's graded response model was examined across 324 conditions. Full information maximum likelihood (FIML) was compared with a 3-stage estimator for categorical item factor analysis (CIFA) when the unweighted least squares method was used in CIFA's third stage. CIFA is much faster in estimating multidimensional models, particularly with correlated dimensions. Overall, CIFA yields slightly more accurate parameter estimates, and FIML yields slightly more accurate standard errors. Yet, across most conditions, differences between methods are negligible. FIML is the best election in small sample sizes (200 observations). CIFA is the best election in larger samples (on computational grounds). Both methods failed in a number of conditions, most of which involved 200 observations, few indicators per dimension, highly skewed items, or low factor loadings. These conditions are to be avoided in applications.

[1]  Kristopher J Preacher,et al.  Item factor analysis: current approaches and future directions. , 2007, Psychological methods.

[2]  André Beauducel,et al.  On the Performance of Maximum Likelihood Versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA , 2006 .

[3]  R. D. Bock,et al.  High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature , 2005 .

[4]  H. Joe,et al.  Composite likelihood estimation in multivariate data analysis , 2005 .

[5]  Albert Maydeu-Olivares,et al.  Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables , 2005 .

[6]  Albert Maydeu-Olivares Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data , 2005, Multivariate behavioral research.

[7]  Albert Maydeu-Olivares,et al.  Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables , 2005 .

[8]  D. Flora,et al.  An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. , 2004, Psychological methods.

[9]  R. Tate,et al.  A Comparison of Selected Empirical Methods for Assessing the Structure of Responses to Test Items , 2003 .

[10]  Albert Maydeu-Olivares,et al.  Limited Information Estimation and Testing of Discretized Multivariate Normal Structural Models , 2003 .

[11]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[12]  Christine DiStefano,et al.  The Impact of Categorization With Confirmatory Factor Analysis , 2002 .

[13]  K. Jöreskog,et al.  Factor Analysis of Ordinal Variables: A Comparison of Three Approaches , 2001, Multivariate behavioral research.

[14]  K. Bollen,et al.  Improper Solutions in Structural Equation Models , 2001 .

[15]  Albert Maydeu-Olivares,et al.  Multidimensional Item Response Theory Modeling of Binary Data: Large Sample Properties of NOHARM Estimates , 2001 .

[16]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[17]  A. Rodríguez-Fornells,et al.  Psychometric properties of the Spanish adaptation of the Social Problem-Solving Inventory-Revised (SPSI-R). , 2000 .

[18]  Randall E. Schumacker,et al.  Confirmatory Factor Analysis With Different Correlation Types and Estimation Methods , 2000 .

[19]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[20]  R. P. McDonald,et al.  Test Theory: A Unified Treatment , 1999 .

[21]  P. Boeck,et al.  Confirmatory Analyses of Componential Test Structure Using Multidimensional Item Response Theory. , 1999, Multivariate behavioral research.

[22]  M. Reckase Item Response Theory: Parameter Estimation Techniques , 1998 .

[23]  Xiao-Li Meng,et al.  Fitting Full-Information Item Factor Models and an Empirical Investigation of Bridge Sampling , 1996 .

[24]  Conor V. Dolan,et al.  Factor analysis of variables with 2, 3, 5, and 7 response categories: A comparison of categorical variable estimators using simulated data , 1994 .

[25]  Mark Reiser,et al.  Validity of the chi‐square test in dichotomous variable factor analysis when expected frequencies are small , 1994 .

[26]  Margaret J. Potthast,et al.  Confirmatory factor analysis of ordered categorical variables with large models , 1993 .

[27]  J. S. Long,et al.  Testing Structural Equation Models , 1993 .

[28]  B. Muthén,et al.  A comparison of some methodologies for the factor analysis of non‐normal Likert variables: A note on the size of the model , 1992 .

[29]  Clement A. Stone,et al.  Recovery of Marginal Maximum Likelihood Estimates in the Two-Parameter Logistic Response Model: An Evaluation of MULTILOG , 1992 .

[30]  Edward E. Rigdon,et al.  The Performance of the Polychoric Correlation Coefficient and Selected Fitting Functions in Confirmatory Factor Analysis with Ordinal Data , 1991 .

[31]  F. Baker Comparison of minimum logit chi-square and Bayesian item parameter estimation , 1991 .

[32]  D. Kaplan The behaviour of three weighted least squares estimators for structured means analysis with non‐normal Likert variables , 1991 .

[33]  D. Knol,et al.  Empirical Comparison Between Factor Analysis and Multidimensional Item Response Models. , 1991, Multivariate behavioral research.

[34]  John J. McArdle,et al.  An Applied Comparison of Methods for Least- Squares Factor Analysis of Dichotomous Variables , 1991 .

[35]  S. Reise,et al.  Parameter Recovery in the Graded Response Model Using MULTILOG , 1990 .

[36]  F. Drasgow An Evaluation of Marginal Maximum Likelihood Estimation for the Two-Parameter Logistic Model , 1989 .

[37]  Bengt Muthén,et al.  Testing the assumptions underlying tetrachoric correlations , 1988 .

[38]  Colin Fraser,et al.  NOHARM: Least Squares Item Factor Analysis. , 1988, Multivariate behavioral research.

[39]  Jan de Leeuw,et al.  On the relationship between item response theory and factor analysis of discretized variables , 1987 .

[40]  Frank B. Baker,et al.  Methodology Review: Item Parameter Estimation Under the One-, Two-, and Three-Parameter Logistic Models , 1987 .

[41]  Robert J. Mislevy,et al.  Recent Developments in the Factor Analysis of Categorical Variables , 1986 .

[42]  B. Muthén,et al.  A comparison of some methodologies for the factor analysis of non‐normal Likert variables , 1985 .

[43]  B. Muthén A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators , 1984 .

[44]  B. Muthén Latent variable structural equation modeling with categorical data , 1983 .

[45]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[46]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[47]  B. Muthén Contributions to factor analysis of dichotomous variables , 1978 .

[48]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[49]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[50]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[51]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[52]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[53]  E. Matthew Annual Meeting of the National Council on Measurement in Education , 2002 .

[54]  Francis Tuerlinckx,et al.  The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. , 2001, Psychological methods.

[55]  Roderick P. McDonald,et al.  Normal-Ogive Multidimensional Model , 1997 .

[56]  B. Muthén,et al.  Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes , 1997 .

[57]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[58]  John R. Boulet The effect of nonnormal ability distributions on IRT parameter estimation using full-information and limited-information methods. , 1996 .

[59]  R. P. McDonald,et al.  Goodness of Fit in Item Response Models. , 1995, Multivariate behavioral research.

[60]  猪原 正守 Comparison of estimation methods in factor analysis , 1986 .

[61]  Melvin R. Novick,et al.  Statistical Theories of Mental Test Scores , 1969 .

[62]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[63]  F. Lord A theory of test scores. , 1952 .

[64]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .