Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

[1]  Seyed Morteza Sabet,et al.  Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water , 2015 .

[2]  T. Yeh,et al.  Effect of dissolved oxygen content on the oxide structure of Alloy 625 in supercritical water environments at 700 °C , 2014 .

[3]  E. Han,et al.  Corrosion behavior of Alloy 690 in aerated supercritical water , 2013 .

[4]  Fu-Rong Chen,et al.  Corrosion behavior of Alloy 625 in supercritical water environments , 2012 .

[5]  M. Pijolat,et al.  Oxidation kinetics and mechanisms of Ni-base alloys in pressurised water reactor primary conditions: Influence of subsurface defects , 2011 .

[6]  M. Pijolat,et al.  A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor , 2010 .

[7]  E. Windsor,et al.  Alloy 600 Aqueous Corrosion at Elevated Temperatures and Pressures: An In Situ Raman Spectroscopic Investigation , 2009 .

[8]  K. Sridharan,et al.  Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants , 2008 .

[9]  K. Sridharan,et al.  Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation , 2008 .

[10]  James I. Cole,et al.  Materials Challenges for Generation IV Nuclear Energy Systems , 2008 .

[11]  A. Galerie,et al.  Mechanisms Of High Temperature Corrosion: A Kinetic Approach , 2008 .

[12]  G. Was,et al.  Oxidation of ferritic–martensitic alloys T91, HCM12A and HT-9 in supercritical water , 2007 .

[13]  A. Kimura,et al.  High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems , 2007 .

[14]  Ying Yang,et al.  Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water , 2006 .

[15]  K. Sridharan,et al.  Corrosion behavior of ferritic–martensitic steel T91 in supercritical water , 2006 .

[16]  Yoshiaki Oka,et al.  Conceptual design of compact supercritical water-cooled fast reactor with thermal hydraulic coupling , 2006 .

[17]  Gaurav Gupta,et al.  Corrosion and stress corrosion cracking in supercritical water , 2007 .

[18]  F. Jomard,et al.  Diffusion of iron in Cr2O3: polycrystals and thin films , 2005 .

[19]  P. Marcus,et al.  XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy , 2004 .

[20]  A. Kimura,et al.  Corrosion properties of oxide dispersion strengthened steels in super-critical water environment , 2004 .

[21]  J. Konys,et al.  Materials for high performance light water reactors , 2004 .

[22]  H. Grabke,et al.  Initial oxidation and chromium diffusion. I. Effects of surface working on 9–20% Cr steels , 2004 .

[23]  Peter Kritzer,et al.  Corrosion in high-temperature and supercritical water and aqueous solutions: a review , 2004 .

[24]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[25]  Yoshiaki Oka,et al.  Conceptual design of a high temperature power reactor cooled and moderated by supercritical light water , 1998 .

[26]  C. Monty,et al.  Self-diffusion in cr2o3 I. Chromium diffusion in single crystals , 1992 .

[27]  C. Monty,et al.  Self-diffusion in cr2o3 II. Oxygen diffusion in single crystals , 1992 .

[28]  C. Monty,et al.  Self-diffusion in cr2o3 III. Chromium and oxygen grain-boundary diffusion in polycrystals , 1992 .

[29]  H. Schmidt,et al.  Diffusion of cations in chromia layers grown on iron-base alloys , 1992 .

[30]  W. K. Boyd,et al.  Corrosion of Stainless Steels in Supercritical Water , 1957 .