COBE—DMR constraints on the non-linear coupling parameter: a wavelet based method

Non-linearity introduced in slow-roll inflation will produce weakly non-Gaussian cosmic microwave background (CMB) temperature fluctuations. We have simulated non-Gaussian large-scale CMB maps (including COBE-DMR constraints) introducing an additional quadratic term in the gravitational potential. The amount of non-linearity is controlled by the so-called non-linear coupling parameter f n l . An analysis based on the Spherical Mexican Hat wavelet was applied to these and to the COBE-DMR maps. Skewness values obtained at several scales were combined into a Fisher discriminant. Comparison of the Fisher discriminant distributions obtained for different non-linear coupling parameters with the COBE-DMR values sets a constraint of ‖ f n l ‖ < 1100 at the 68 per cent confidence level. This new constraint is tighter than the one previously obtained by using the bispectrum by Komatsu et al.

[1]  Cosmological Implications of the MAXIMA-1 High-Resolution Cosmic Microwave Background Anisotropy Measurement , 2001, astro-ph/0105062.

[2]  K. Gorski,et al.  Tests for Non-Gaussian Statistics in the DMR Four-Year Sky Maps , 1996, astro-ph/9601062.

[3]  L. Cayón,et al.  Genus and spot density in the COBE dmr first year anisotropy maps , 1995, astro-ph/9502066.

[4]  Alejandro Gangui,et al.  Submitted to the Astrophysical Journal , 1993 .

[5]  G. Hinshaw,et al.  Comments on the Statistical Analysis of Excess Variance in the COBE Differential Microwave Radiometer Maps , 1994 .

[6]  Anthony N. Lasenby,et al.  Testing the Gaussianity of the COBE DMR data with spherical wavelets , 2000 .

[7]  N. Aghanim,et al.  Using the COBE/DMR data as a test-bed for normality assessments , 2000, astro-ph/0009463.

[8]  A. Banday,et al.  On the Non-Gaussianity Observed in the COBE Differential Microwave Radiometer Sky Maps , 2000 .

[9]  H. Sandvik,et al.  The complete bispectrum of COBE‐DMR four‐year maps , 2000, astro-ph/0010395.

[10]  Krzysztof M. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1998 .

[11]  A. J. Banday,et al.  Spherical Mexican hat wavelet: an application to detect non-Gaussianity in the COBE-DMR maps , 2001 .

[12]  C. H. Lineweaver,et al.  Applications of Wavelets to the Analysis of Cosmic Microwave Background Maps , 1999, astro-ph/9903206.

[13]  R. B. Barreiro,et al.  The discriminating power of wavelets to detect non-Gaussianity in the cosmic microwave background , 2001 .

[14]  Do wavelets really detect non‐Gaussianity in the 4‐year COBE data? , 2000, astro-ph/0001385.

[15]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[16]  F. Argueso,et al.  The performance of spherical wavelets to detect non‐Gaussianity in the cosmic microwave background sky , 2002 .

[17]  David N. Spergel,et al.  Measurement of the Cosmic Microwave Background Bispectrum on the COBE DMR Sky Maps , 2001, astro-ph/0107605.

[18]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[19]  A. J. Banday,et al.  The Trispectrum of the 4 Year COBE DMR Data , 2001 .

[20]  L. Verde,et al.  Tests for primordial non-Gaussianity , 2000, astro-ph/0011180.

[21]  A. Banday,et al.  Root Mean Square Anisotropy in the COBE DMR Four-Year Sky Maps , 1996, astro-ph/9601065.

[22]  J. Carlstrom,et al.  Cosmological Parameter Extraction from the First Season of Observations with the Degree Angular Scale Interferometer , 2002 .

[23]  Bond,et al.  Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. , 1990, Physical review. D, Particles and fields.

[24]  Cosmological Parameter Extraction from the First Season of Observations with DASI , 2001, astro-ph/0104490.