Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons

[1]  Svilen Sabchevski,et al.  The Gyrotrons as Promising Radiation Sources for THz Sensing and Imaging , 2020, Applied Sciences.

[2]  M. Thumm State-of-the-Art of High-Power Gyro-Devices and Free Electron Masers , 2020, Journal of Infrared, Millimeter, and Terahertz Waves.

[3]  Manfred Thumm,et al.  State-of-the-art of high power gyro-devices and free electron masers update 2003 , 2004 .

[4]  A. Fokin,et al.  Second-Harmonic Generation of Subterahertz Gyrotron Radiation by Frequency Doubling in InP:Fe and Its Application for Magnetospectroscopy of Semiconductor Structures , 2019, Semiconductors.

[5]  M. Shapiro,et al.  Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron. , 2019, Applied physics letters.

[6]  B. Gorshunov,et al.  Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region , 2017, Scientific Reports.

[7]  M. A. Koshelev,et al.  High-power terahertz sources for spectroscopy and material diagnostics , 2016 .

[8]  Emilio A. Nanni,et al.  Terahertz-driven linear electron acceleration , 2014, Nature Communications.

[9]  G. Denisov,et al.  Nanosecond Laser-Driven Semiconductor Switch for 70 GHz Microwave Radiation , 2012 .

[10]  Premjeet Chahal,et al.  Terahertz Characterization of Dielectric Substrates for Component Design and Nondestructive Evaluation of Packages , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[11]  J. Krupka,et al.  Permittivity and microwave absorption of semi-insulating InP at microwave frequencies , 2011 .

[12]  V. V. Parshin,et al.  Instrumental complex and the results of precise measurements of millimeter- and submillimeter-wave propagation in condensed media and the atmosphere , 2009 .

[13]  G. Denisov,et al.  Fast quasi-optical phase shifter based on the effect of induced photo conductivity in silicon , 2007 .

[14]  J. Krupka,et al.  Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[15]  O. Madelung Semiconductors: Data Handbook , 2003 .

[16]  V. V. Parshin,et al.  An Automated Millimeter-Wave Resonator Spectrometer for Investigating the Small Absorption in Gases , 2003 .

[17]  B. M. Garin,et al.  Nature of millimeter wave losses in low loss CVD diamonds , 2003 .

[18]  S. N. Vlasov,et al.  The absorption investigation in CVD-diamond plates and windows at 50-200 GHz , 2002 .

[19]  Yaron Silberberg,et al.  Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy , 2002, Nature.

[20]  J. M. Chamberlain,et al.  The interaction between Terahertz radiation and biological tissue. , 2001, Physics in medicine and biology.

[21]  C. R. Stanley,et al.  Coherent manipulation of semiconductor quantum bits with terahertz radiation , 2001, Nature.

[22]  A. F. Krupnov,et al.  Modern millimeter-wave resonator spectroscopy of broad lines , 2000, 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442).

[23]  A. F. Krupnov,et al.  Precision Resonator Microwave Spectroscopy in Millimeter and Submillimeter Range , 1999 .

[24]  R. Heidinger,et al.  Radiation effects on dielectric losses of Au-doped silicon , 1998 .

[25]  R. Heidinger,et al.  Silicon with extremely low millimeter-wave dielectric loss , 1997 .

[26]  J. C. Garcia,et al.  Electrical conduction in low temperature grown InP , 1993 .

[27]  V. V. Parshin,et al.  A method to measure dielectric parameters in 5–0.5 millimeter wavelength band , 1992 .

[28]  M. I. Petelin,et al.  The induced radiation of excited classical oscillators and its use in high-frequency electronics , 1967 .