THE ROUND IDEAL COMPLETION VIA SOBRIFICATION
暂无分享,去创建一个
[1] Samson Abramsky,et al. Domain theory , 1995, LICS 1995.
[2] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[3] P. Martin-Löf. Notes on constructive mathematics , 1970 .
[4] Rudolf-E. Hoffmann,et al. Sobrification of partially ordered sets , 1979 .
[5] Abbas Edalat. Domain Theory and Integration , 1995, Theor. Comput. Sci..
[6] Abbas Edalat,et al. Power Domains and Iterated Function Systems , 1996, Inf. Comput..
[7] Tsutomu Kamimura,et al. Total Objects of Domains , 1984, Theor. Comput. Sci..
[8] Klaus Weihrauch,et al. Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..
[9] Abbas Edalat,et al. Dynamical Systems, Measures and Fractals via Domain Theory , 1993, Inf. Comput..
[10] Dana S. Scott,et al. Outline of a Mathematical Theory of Computation , 1970 .
[11] N. Saheb-Djahromi,et al. CPO'S of Measures for Nondeterminism , 1980, Theor. Comput. Sci..
[12] Michael B. Smyth,et al. Effectively given Domains , 1977, Theor. Comput. Sci..
[13] Jimmie D. Lawson,et al. Spaces of maximal points , 1997, Mathematical Structures in Computer Science.
[14] Claire Jones,et al. Probabilistic non-determinism , 1990 .
[15] C. Jones,et al. A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[16] Abbas Edalat,et al. A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..