Network Diffusions via Neural Mean-Field Dynamics

We propose a novel learning framework based on neural mean-field dynamics for inference and estimation problems of diffusion on networks. Our new framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities, which renders a delay differential equation with memory integral approximated by learnable time convolution operators, resulting in a highly structured and interpretable RNN. Directly using cascade data, our framework can jointly learn the structure of the diffusion network and the evolution of infection probabilities, which are cornerstone to important downstream applications such as influence maximization. Connections between parameter learning and optimal control are also established. Empirical study shows that our approach is versatile and robust to variations of the underlying diffusion network models, and significantly outperform existing approaches in accuracy and efficiency on both synthetic and real-world data.

[1]  Jiangli Shao,et al.  Temporal Convolutional Networks for Popularity Prediction of Messages on Social Medias , 2019, CCIR.

[2]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[3]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Enhong Chen,et al.  Probabilistic solutions of influence propagation on social networks , 2013, CIKM.

[5]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[6]  Yuxiao Dong,et al.  DeepInf: Social Influence Prediction with Deep Learning , 2018, KDD.

[7]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[8]  Juan-Zi Li,et al.  Social Influence Locality for Modeling Retweeting Behaviors , 2013, IJCAI.

[9]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[10]  David C. Parkes,et al.  Learnability of Influence in Networks , 2015, NIPS.

[11]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Hong Cheng,et al.  A Model-Free Approach to Infer the Diffusion Network from Event Cascade , 2016, CIKM.

[13]  Hui Xiong,et al.  Influence Maximization over Large-Scale Social Networks: A Bounded Linear Approach , 2014, CIKM.

[14]  Takuya Akiba,et al.  Dynamic Influence Analysis in Evolving Networks , 2016, Proc. VLDB Endow..

[15]  Sanjeev R. Kulkarni,et al.  Spectral bounds for independent cascade model with sensitive edges , 2016, 2016 Annual Conference on Information Science and Systems (CISS).

[16]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[17]  Chengqi Zhang,et al.  Measuring Time-Sensitive and Topic-Specific Influence in Social Networks With LSTM and Self-Attention , 2020, IEEE Access.

[18]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[19]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[20]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[22]  Michalis Vazirgiannis,et al.  DiffuGreedy: An Influence Maximization Algorithm Based on Diffusion Cascades , 2018, COMPLEX NETWORKS.

[23]  Le Song,et al.  Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm , 2014, ICML.

[24]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[25]  Yu Zheng,et al.  Inferring Traffic Cascading Patterns , 2017, SIGSPATIAL/GIS.

[26]  Cheng Li,et al.  DeepCas: An End-to-end Predictor of Information Cascades , 2016, WWW.

[27]  Pascal Frossard,et al.  Learning Graphs From Data: A Signal Representation Perspective , 2018, IEEE Signal Processing Magazine.

[28]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[29]  Gyula Y Katona,et al.  SIS Epidemic Propagation on Hypergraphs , 2015, Bulletin of Mathematical Biology.

[30]  Zhenzhong Chen,et al.  Micro-Video Popularity Prediction Via Multimodal Variational Information Bottleneck , 2020, IEEE Transactions on Multimedia.

[31]  Bernhard Schölkopf,et al.  Uncovering the Temporal Dynamics of Diffusion Networks , 2011, ICML.

[32]  Le Song,et al.  Multistage Campaigning in Social Networks , 2016, NIPS.

[33]  Edith Cohen,et al.  Sketch-based Influence Maximization and Computation: Scaling up with Guarantees , 2014, CIKM.

[34]  Jin Xu,et al.  Popularity Prediction on Online Articles with Deep Fusion of Temporal Process and Content Features , 2019, AAAI.

[35]  Enhong Chen,et al.  On Approximation of Real-World Influence Spread , 2012, ECML/PKDD.

[36]  Kyomin Jung,et al.  IRIE: Scalable and Robust Influence Maximization in Social Networks , 2011, 2012 IEEE 12th International Conference on Data Mining.

[37]  Jean Pouget-Abadie,et al.  Inferring Graphs from Cascades: A Sparse Recovery Framework , 2015, ICML.

[38]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[39]  Wei Jing,et al.  NNMLInf: social influence prediction with neural network multi-label classification , 2019, ACM TUR-C.

[40]  Santiago Segarra,et al.  Connecting the Dots: Identifying Network Structure via Graph Signal Processing , 2018, IEEE Signal Processing Magazine.

[41]  Li Guo,et al.  On the Upper Bounds of Spread for Greedy Algorithms in Social Network Influence Maximization , 2015, IEEE Transactions on Knowledge and Data Engineering.

[42]  Jure Leskovec,et al.  SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity , 2015, KDD.

[43]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[44]  Qian Wang,et al.  Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig formalism , 2020, J. Comput. Phys..

[45]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[46]  Le Song,et al.  Scalable Influence Estimation in Continuous-Time Diffusion Networks , 2013, NIPS.

[47]  Alfredo Cuzzocrea,et al.  Personalized DeepInf: Enhanced Social Influence Prediction with Deep Learning and Transfer Learning , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[48]  David Saad,et al.  Scalable Influence Estimation Without Sampling , 2019, ArXiv.

[49]  Faryad Darabi Sahneh,et al.  Epidemic spread in human networks , 2011, IEEE Conference on Decision and Control and European Control Conference.

[50]  Hung T. Nguyen,et al.  Outward Influence and Cascade Size Estimation in Billion-scale Networks , 2017, Proc. ACM Meas. Anal. Comput. Syst..

[51]  Le Song,et al.  Influence Estimation and Maximization in Continuous-Time Diffusion Networks , 2016, ACM Trans. Inf. Syst..

[52]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[53]  Le Song,et al.  Learning Networks of Heterogeneous Influence , 2012, NIPS.

[54]  Masahiro Kimura,et al.  Tractable Models for Information Diffusion in Social Networks , 2006, PKDD.

[55]  Nicolas Vayatis,et al.  Tight Bounds for Influence in Diffusion Networks and Application to Bond Percolation and Epidemiology , 2014, NIPS.

[56]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[57]  Long Chen,et al.  Maximum Principle Based Algorithms for Deep Learning , 2017, J. Mach. Learn. Res..

[58]  Karthik Duraisamy,et al.  A priori estimation of memory effects in reduced-order models of nonlinear systems using the Mori–Zwanzig formalism , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  P. Van Mieghem,et al.  Virus Spread in Networks , 2009, IEEE/ACM Transactions on Networking.

[60]  Istvan Z Kiss,et al.  Epidemic spread in networks: Existing methods and current challenges. , 2014, Mathematical modelling of natural phenomena.

[61]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[62]  Andrey Y. Lokhov,et al.  Reconstructing Parameters of Spreading Models from Partial Observations , 2016, NIPS.

[63]  Jure Leskovec,et al.  On the Convexity of Latent Social Network Inference , 2010, NIPS.

[64]  Le Song,et al.  Influence Function Learning in Information Diffusion Networks , 2014, ICML.

[65]  Edith Cohen,et al.  Size-Estimation Framework with Applications to Transitive Closure and Reachability , 1997, J. Comput. Syst. Sci..

[66]  Stefano Ermon,et al.  Feature-Enhanced Probabilistic Models for Diffusion Network Inference , 2012, ECML/PKDD.

[67]  Laurent Massoulié,et al.  Thresholds for virus spread on networks , 2006, valuetools '06.

[68]  Christos Faloutsos,et al.  Kronecker Graphs: An Approach to Modeling Networks , 2008, J. Mach. Learn. Res..

[69]  Jennifer Wortman,et al.  Viral Marketing and the Diffusion of Trends on Social Networks , 2008 .

[70]  Xueqi Cheng,et al.  DeepHawkes: Bridging the Gap between Prediction and Understanding of Information Cascades , 2017, CIKM.

[71]  Joel Oren,et al.  Influence at Scale: Distributed Computation of Complex Contagion in Networks , 2015, KDD.

[72]  Bernhard Schölkopf,et al.  Structure and dynamics of information pathways in online media , 2012, WSDM.

[73]  Sujay Sanghavi,et al.  Learning the graph of epidemic cascades , 2012, SIGMETRICS '12.

[74]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[75]  Jure Leskovec,et al.  Statistical properties of community structure in large social and information networks , 2008, WWW.

[76]  Huawei Shen,et al.  Popularity Prediction on Social Platforms with Coupled Graph Neural Networks , 2020, WSDM.

[77]  Alessandro Panconesi,et al.  Trace complexity of network inference , 2013, KDD.