Matrix completion-based distributed compressive sensing for polarimetric SAR tomography

摘要创新点本文提出了一种基于矩阵补偿的分布式压缩感知层析合成孔径雷达成像方法。该方法首先利用矩阵补偿对不同极化通道的未知基线数据进行估计, 然后基于补偿后的数据, 利用分布式压缩感知对高程向进行重建。相比于传统的压缩感知和分布式压缩感知技术, 在不改变高程向孔径大小的前提下, 本文方法可以提升高程向重建质量,这意味着减少层析合成孔径雷达成像中获取基线的数目, 从而降低飞行成本和时间消耗成为可能。本文的主要创新点是: (a)一种全新的利用矩阵补偿对未知极化层析合成孔径雷达观测数据进行恢复的方法;(b)基于补偿数据的高程向分布式压缩感知重建的实现。

[1]  Wen Hong,et al.  Radar Change Imaging With Undersampled Data Based on Matrix Completion and Bayesian Compressive Sensing , 2015, IEEE Geoscience and Remote Sensing Letters.

[2]  Andreas Reigber,et al.  Multisignal Compressed Sensing for Polarimetric SAR Tomography , 2012, IEEE Geoscience and Remote Sensing Letters.

[3]  L. Ulander,et al.  BIOSAR 2007:Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment , 2008 .

[4]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[5]  Richard Bamler,et al.  Tomographic SAR Inversion by $L_{1}$ -Norm Regularization—The Compressive Sensing Approach , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Wen Hong,et al.  Sparse microwave imaging: Principles and applications , 2012, Science China Information Sciences.

[7]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[8]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.