On the rheology of the upper mantle

Mechanisms permitting the steady state deformation of crystalline solids are critically reviewed, and an approximate constitutive relationship is derived for fluid phase transport in a partial melt. (Fluid phase transport has a linear stress dependence and an inverse squared grain size dependence.) A set of rheologic material constants for olivine (Fo85-Fo95) are derived from a combination of experimental data and empirical generalizations. Our preferred power law exponent n is 4.2, and the associated Dorn parameter is 1.2 × 104. Dislocation creep below the high-stress breakdown is the dominant deformation mechanism in the upper mantle. The possibility exists that the bottom of the upper mantle is not deforming at a significant rate (≥10−14/sec) if the activation volume for diffusion is greater than 40 cm³/mole.

[1]  W. Prager,et al.  Introduction of Mechanics of Continua , 1962 .

[2]  R. Gordon Observation of crystal plasticity under high pressure with applications to the Earth's mantle , 1971 .

[3]  G. R. Barsch,et al.  Elastic constants of single‐crystal forsterite as a function of temperature and pressure , 1969 .

[4]  C. Goetze High temperature rhelogy of westerly granite , 1971 .

[5]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[6]  W. M. Kaula Elastic models of the mantle corresponding to variations in the external gravity field , 1963 .

[7]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[8]  D. Mckenzie The geophysical importance of high temperature creep , 1968 .

[9]  J. E. Dorn,et al.  EXPERIMENTAL CORRELATIONS FOR HIGH-TEMPERATURE CREEP. , 1968 .

[10]  N. Carter,et al.  High Temperature Flow of Dunite and Peridotite , 1970 .

[11]  M. Ashby On interface-reaction control of Nabarro-Herring creep and sintering , 1969 .

[12]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[13]  J. E. Dorn,et al.  A CRITICAL REVIEW OF THE PEIERLS MECHANISM , 1967 .

[14]  J. Weertman,et al.  Steady-State Creep of Crystals , 1957 .

[15]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[16]  M. Ashby A first report on deformation-mechanism maps , 1972 .

[17]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[18]  A. E. Ringwood,et al.  Phase transformations and the constitution of the mantle , 1970 .

[19]  R. Gordon Diffusion creep in the Earth's mantle , 1965 .

[20]  C. Raleigh Mechanisms of plastic deformation of olivine , 1968 .

[21]  P. Haasen,et al.  Dislocations and Plastic Flow in the Diamond Structure , 1969 .

[22]  J. B. Holt Self-diffusion of oxygen in single-crystal beryllium oxide , 1964 .

[23]  J. Weertman The creep strength of the Earth's mantle , 1970 .

[24]  W. D. Kingery,et al.  SELF-DIFFUSION OF OXYGEN IN SINGLE CRYSTAL AND POLYCRYSTALLINE ALUMINUM OXIDE , 1960 .

[25]  W. K. Chen,et al.  Oxygen self-diffusion in undoped and doped cobaltous oxide , 1969 .

[26]  Y. Syono,et al.  Melting of a peridotite nodule at high pressures and high water pressures , 1968 .

[27]  H. C. Heard,et al.  Chapter 4: Deformation of Rocks at 500° to 800° C. , 1960 .

[28]  M. Ashby,et al.  On grain boundary sliding and diffusional creep , 1971 .

[29]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[30]  Mineo Kumazawa,et al.  Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite , 1969 .

[31]  F. Nabarro Steady-state diffusional creep , 1967 .

[32]  John F Nye,et al.  The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  M. O'keeffe,et al.  DIFFUSION OF OXYGEN IN SINGLE CRYSTALS OF NICKEL OXIDE , 1961 .

[34]  Y. Oishi,et al.  Oxygen Diffusion in Periclase Crystals , 1960 .

[35]  A. Ruoff Mass Transfer Problems in Ionic Crystals with Charge Neutrality , 1965 .