Electronic Stopping and Momentum Density of Diamond from First-Principles Treatment of the Microscopic Dielectric Function

We study the dielectric and energy loss properties of diamond via first-principles calculation of the (0,0)-element (‘head’ element) of the frequency and wave-vector-dependent dielectric matrix The calculation uses all-electron Kohn–Sham states in the integral of the irreducible polarizability in the random phase approximation. We approximate the head element of the inverse matrix by the inverse of the calculated head element, and integrate over frequencies and momenta to obtain the electronic energy loss of protons at low velocities. Numerical evaluation for diamond targets predicts that the band gap causes a strong non-linear reduction of the electronic stopping power at ion velocities below 0.2 a.u.

[1]  J. Sabin,et al.  Calculated stopping cross sections for diamond and solid silicon and germanium , 1987 .

[2]  M. Rérat,et al.  Ab initio self-consistent calculations of the Compton profiles and polarizabilities of diamond and cubic boron nitride , 1998 .

[3]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[4]  J. Boettger Approximate two-electron spin-orbit coupling term for density-functional-theory DFT calculations using the Douglas-Kroll-Hess transformation , 2000 .

[5]  Niels Bohr,et al.  Scattering and Stopping of Fission Fragments , 1940 .

[6]  Cohen,et al.  Band gaps of diamond under anisotropic stress. , 1992, Physical review. B, Condensed matter.

[7]  A. Tasch,et al.  Local electron concentration‐dependent electronic stopping power model for Monte Carlo simulation of low‐energy ion implantation in silicon , 1990 .

[8]  J. Boettger,et al.  Inclusion of relativistic effects in Gaussian-basis density functional calculations for extended systems☆ , 2000 .

[9]  J. F. Ziegler,et al.  Ranges of energetic ions in matter , 1981 .

[10]  D. S. Falk Effect of the Lattice on Dielectric Properties of an Electron Gas , 1960 .

[11]  John R. Sabin,et al.  Electronic stopping of protons for lithium in the dielectric formulation obtained from first-principles calculations , 1999 .

[12]  A. Gras-marti,et al.  Stopping power of low-velocity ions in solids: inhomogeneous electron gas model , 1994 .

[13]  Huang,et al.  Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. , 1993, Physical review. B, Condensed matter.

[14]  Nithianandam,et al.  Synchrotron x-ray optical properties of natural diamond. , 1993, Physical review. B, Condensed matter.

[15]  Ho Yu-kun,et al.  Electronic stopping cross sections of energetic protons in solids , 1996 .

[16]  V. L. Moruzzi,et al.  Calculated electronic properties of metals , 1978 .

[17]  Fuchs,et al.  Origin and temperature dependence of the first direct gap of diamond. , 1992, Physical review. B, Condensed matter.

[18]  A. Arnau,et al.  Comparative study of the stopping power of graphite and diamond , 1997 .

[19]  T. Kaneko Partial and Total Electronic Stoppings of Solids and Atoms for Energetic Ions , 1989 .

[20]  Ab initio calculation of dynamic polarizability and dielectric constant of carbon and silicon cubic crystals , 1997 .

[21]  Johnson,et al.  Soft-x-ray resonant inelastic scattering at the C K edge of diamond. , 1992, Physical review letters.

[22]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[23]  D. Ellis,et al.  Ab Initio Calculation of the Electronic Structure and Optical Properties of Diamond Using the Discrete Variational Method , 1971 .

[24]  N. phil. II. On the theory of the decrease of velocity of moving electrified particles on passing through matter , 1913 .

[25]  T. Kaneko Partial and Total Electronic Stopping Cross Sections of Atoms and Solids for Protons , 1993 .

[26]  Joseph F. Janni,et al.  Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability , 1982 .

[27]  W. V. Haeringen,et al.  Stopping powers for channeled helium ions in silicon using electron densities from bandstructure calculations , 1994 .

[28]  Wang,et al.  Variational quantum Monte Carlo nonlocal pseudopotential approach to solids: Cohesive and structural properties of diamond. , 1988, Physical review letters.

[29]  N. Bohr Dr. phil.,et al.  LX. On the decrease of velocity of swiftly moving electrified particles in passing through matter , 1915 .

[30]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[31]  J. Boettger Spin‐Polarized LCGTO–FF band structure technique: Application to 3d transition metal monolayers , 1993 .

[32]  S. Nakagawa Impact Parameter Dependence of the Electronic Stopping Power for Channeled Ions , 1993 .

[33]  J. Mintmire,et al.  Local-density-functional methods in two-dimensionally periodic systems. Hydrogen and beryllium monolayers , 1982 .

[34]  J. Sabin,et al.  Simulation of ion implantation in Si for 0.25 keV H+ under channeling conditions , 1995 .

[35]  K. Kobayashi,et al.  Measurement of the structure factors of Diamond , 1990 .

[36]  Boettger,et al.  Interplanar binding and lattice relaxation in a graphite dilayer. , 1992, Physical review. B, Condensed matter.

[37]  Helmut Paul,et al.  Fitted empirical reference cross sections for K-shell ionization by protons , 1989 .

[38]  J. Jackson,et al.  z3 Corrections to Energy Loss and Range , 1972 .

[39]  J. Sabin,et al.  Polarization propagator calculations of generalized oscillator strengths and stopping cross sections of He , 1992 .

[40]  Phenomenological electronic stopping-power model for molecular dynamics and Monte Carlo simulation of ion implantation into silicon. , 1996, Physical review. B, Condensed matter.

[41]  Deutsch,et al.  Electronic charge distribution in crystalline diamond, silicon, and germanium. , 1993, Physical review. B, Condensed matter.

[42]  Kaneko Wave-packet theory of stopping of bound electrons. , 1989, Physical review. A, General physics.

[43]  Satpathy,et al.  Comparison of electron bands of hexagonal and cubic diamond. , 1990, Physical review. B, Condensed matter.

[44]  N. Bohr,et al.  Velocity-Range Relation for Fission Fragments , 1940 .

[45]  J. Boettger,et al.  First principles systematics of ordered metallic monolayers. I. Groups I and II through Sr , 1989 .

[46]  J. Boettger Gaussian fitting function basis sets for crystalline silicon: Bond-centered s-type vs. site-centered f-type , 1996 .

[47]  N. Rösch,et al.  Charge separation and covalent bonding in metal oxide surfaces: A local density functional study on the MgO(001) surface , 1994 .

[48]  Local-field and exchange-correlation effects in optical spectra of semiconductors. , 1996, Physical review. B, Condensed matter.

[49]  M. Spackman The Electron Distribution in Diamond: a Comparison Between Experiment and Theory , 1991 .

[50]  N. Kabachnik,et al.  MONTE CARLO SIMULATION ANALYSIS OF PROTON-ENERGY SPECTRA FOR AXIAL CHANNELING IN SILICON IN THE INTERMEDIATE ENERGY REGION , 1990 .

[51]  J. Boettger Equation of state calculations using the LCGTO-FF method: Equilibrium properties of hcp beryllium † , 1995 .

[52]  S. Connell,et al.  The anisotropic electron - positron momentum distribution in diamond , 1997 .

[53]  Mitio Inokuti,et al.  Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited , 1971 .